Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only.

1. Find ∇f and $D_{\mathbf{u}} f$ if $\mathbf{u}=\langle-1 / \sqrt{5}, 2 / \sqrt{5}\rangle$ and $f(x, y)=x \sin y$
2. If $u=x y+y z+z x, x=s t, y=e^{s t}$, and $z=t^{2}$, use the chain route to find

$$
\frac{\partial u}{\partial s} \quad \text { and } \quad \frac{\partial u}{\partial t}
$$

3. Find the equation of the tangent plane to the surface $x^{2}-2 y^{2}-3 z^{2}+x y z=4$ at the point $(3,-2,-1)$.
4. Show the limit below does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}
$$

5. The table below lists values for a particular function $f(x, y)$. For each CRITICAL point in the table determine if it is a local minimum, a local maximum or a saddle point.

(x, y)	$f(x, y)$	$f_{x}(x, y)$	$f_{y}(x, y)$	$f_{x x}(x, y)$	$f_{y y}(x, y)$	$f_{x y}(x, y)$
$(0,0)$	25	0	0	2	4	1
$(1,0)$	12	0	0	4	0	2
$(1,1)$	11	0	2	2	4	8
$(2,1)$	3	0	0	-2	-3	2
$(2,2)$	13	3	0	-9	3	-4
$(-1,-2)$	1	0	0	0	4	-7

6. Set up but do NOT evaluate the interated integral (or sum of interated integrals) which will give the volume under the paraboloid $z=x^{2}+y^{2}$ and above the region bounded by $y=x^{2}$ and $x=y^{2}$.
7. Sketch the region of integration and change the order of integration of

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} f(x, y) d x d y
$$

8. Convert to polar coordinates and integrate.

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} d y d x
$$

9. Find the point on the plane $2 x-y+z=1$ that is closest to the point $(-4,1,3)$.
10. On the other side of the page are Maple contour graphs of the functions (in some order) of $x+y, x-$ $y, x y, x-y^{2}, x^{2}-y, x^{2}+y^{2}, x^{2}-y^{2}$ and $x^{3}-3 x y^{2}$. Identify which is which. The plots are over $[-2,2] \times[-2,2]$. But note that the unit length in the y-direction is smaller than the unit length in the x-direction. (That is, the aspect ratio is not one.)

Maple Contour Plots

