MAC 3313 Calculus 3

Test 3

Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. Find the curl and div of $\mathbf{F} = \langle xe^y, -ze^{-y}, y \ln z \rangle$.

2. Find f so that $\mathbf{F} = \nabla f$ and use it to find the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$. Here $\mathbf{F} = \langle y, x + z, y \rangle$. and C is a curve from (2, 1, 4) to (8, 3, -1).

3. Find the equation of the tangent plane to $\mathbf{r}(u, v) = \langle uv, ue^v, ve^u \rangle$ when $u_0 = 1, v_0 = 0$. Compute x_0, y_0, z_0 .

4. Write down and simplify but do **NOT** evaluate the double integral with polar co-ordinates from using Green's Theorem to change $\int_C xy dx + 2x^2 dy$ to a double integral. C consists of the line segment from (0,1) to (0,0), then the line segment from (0,0) to (1,0) and then upper right quarter of the unit circle $x^2 + y^2 = 1$.

5. Write down and simplify but do **NOT** evaluate the integral (in terms of t) to find the mass of a thin wire bent into the shape of the semi-circle $x^2 + y^2 = 4, x \ge 0$ if the density is given by $\rho(x, y)$.

6. Write down and simplify but do **NOT** evaluate the surface integral $\int \int_S \mathbf{F} \cdot d\mathbf{S}$. Where S is given by $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle$, $0 \le u \le 1, 0 \le v \le \pi$ and $\mathbf{F} = \langle y, x, z^2 \rangle$.

7. Use spherical co-ordinates and density f(x, y, z) = z to find the mass of the part of the ball $x^2 + y^2 + z^2 \le 1$ in the first octant.

8. Re-write the integral $\int_0^1 \int_u^1 \int_0^y f(x, y, z) dz dx dy$ in the orders dz dy dx and dy dx dz.

9. Evaluate $\int \int_R e^{x+y} dA$ where R is the "diamond" region $|x| + |y| \le 1$ using the transformation x = (u+v)/2, y = (u-v)/2. Explicitly draw the regions R and S. Clearly label the Jacobian of the transformation.

10. Match the vector fields $\langle y, x \rangle$, $\langle -y, x \rangle$, $\langle x^2, -y \rangle$, and $\langle -x, -y \rangle$ with the Maple field plots below.

Maple fieldplots