Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. Find the curl and div of $\mathbf{F}=\left\langle x e^{y},-z e^{-y}, y \ln z\right\rangle$.
2. Find f so that $\mathbf{F}=\nabla f$ and use it to find the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Here $\mathbf{F}=\langle y, x+z, y\rangle$. and C is a curve from $(2,1,4)$ to $(8,3,-1)$.
3. Find the equation of the tangent plane to $\mathbf{r}(u, v)=\left\langle u v, u e^{v}, v e^{u}\right\rangle$ when $u_{0}=1, v_{0}=0$. Compute x_{0}, y_{0}, z_{0}.
4. Write down and simplify but do NOT evaluate the double integral with polar co-ordinates from using Green's Theorem to change $\int_{C} x y d x+2 x^{2} d y$ to a double integral. C consists of the line segment from $(0,1)$ to $(0,0)$, then the line segment from $(0,0)$ to $(1,0)$ and then upper right quarter of the unit circle $x^{2}+y^{2}=1$.
5. Write down and simplify but do NOT evaluate the integral (in terms of t) to find the mass of a thin wire bent into the shape of the semi-circle $x^{2}+y^{2}=4, x \geq 0$ if the density is given by $\rho(x, y)$.
6. Write down and simplify but do NOT evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$. Where S is given by $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 1,0 \leq v \leq \pi$ and $\mathbf{F}=\left\langle y, x, z^{2}\right\rangle$.
7. Use spherical co-ordinates and density $f(x, y, z)=z$ to find the mass of the part of the ball $x^{2}+y^{2}+z^{2} \leq 1$ in the first octant.
8. Re-write the integral $\int_{0}^{1} \int_{y}^{1} \int_{0}^{y} f(x, y, z) d z d x d y$ in the orders $d z d y d x$ and $d y d x d z$.
9. Evaluate $\iint_{R} e^{x+y} d A$ where R is the "diamond" region $|x|+|y| \leq 1$ using the transformation $x=$ $(u+v) / 2, y=(u-v) / 2$. Explicitly draw the regions R and S. Clearly label the Jacobian of the transformation.
10. Match the vector fields $\langle y, x\rangle,\langle-y, x\rangle,\left\langle x^{2},-y\right\rangle$, and $\langle-x,-y\rangle$ with the Maple fieldplots below.

