Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. Find the curl and div of $\mathbf{F}=\left\langle x^{2} y, y z^{2}, z x^{2}\right\rangle$.
2. Find f so that $\mathbf{F}=\nabla f$ and use it to find the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Here $\mathbf{F}=\left\langle 2 x z+\sin y, x \cos y, x^{2}\right\rangle$ and C is a curve from $(1,0,0)$ to $(1,0,2 \pi)$.
3. Evaluate the line integral $\int_{C} x^{2} y d x-3 y^{2} d y$ using Green's Theorem when C is the curve which goes around the perimeter of the region $\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$ in the backwards (clockwise) direction.
4. Find the equation of the tangent plane to the parametric surface given by $\left\langle u^{2}, u-v^{2}, v^{2}\right\rangle$ at the point $(1,0,1)$.
5. Rewrite but do NOT evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ as an usual double iterated integral (including limits of integration and a simplified integrand). Here $\mathbf{F}=\langle y, x, x y\rangle$ and S is the portion of the paraboloid $z=x^{2}+2 y^{2}$ over the region $\{(x, y): 1 \leq x \leq 2, \ln x \leq y \leq \pi\}$ Use the upward pointing normal of S.
6. Set up but do NOT evaluate a double iterated integral for the surface area of the surface $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. The double iterated integral needs to have limits of integration and a simplified integrand.
7. Use cylindrical co-ordinates to evaluate $\iiint_{E} x^{2} d V$ when E is the solid within $x^{2}+y^{2}=1$, above $z=0$ and below $z^{2}=4 x^{2}+4 y^{2}$.
8. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if $\mathbf{F}=\left\langle x^{2} y,-x y\right\rangle$, and $\mathbf{r}(t)=\left\langle t^{3}, t^{4}\right\rangle, 0 \leq t \leq 1$.
9. Use the given transformation to evaluate $\iint_{R} x d A$ where R is the region in the FIRST quadrant where $9 x^{2}+4 y^{2} \leq 36$ and the transformation is $x=2 u, y=3 v$. Also explicitly draw R and S, the region in the $u v$ plane that maps to R in the $x y$ plane by this transformation. Clearly label the Jacobian of the transformation.
10. Rewrite the the limits of $\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ in the orders $d x d y d z$ and $d y d z d x$.

