Indeterminate Forms

$$
\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad 0^{0}, \quad \infty^{0}, \quad 1^{\infty}, \quad \infty-\infty
$$

These are the so called indeterminate forms. One can apply L'Hopital's rule directly to the forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$. It is simple to translate $0 \cdot \infty$ into $\frac{0}{1 / \infty}$ or into $\frac{\infty}{1 / 0}$, for example one can write $\lim _{x \rightarrow \infty} x e^{-x}$ as $\lim _{x \rightarrow \infty} x / e^{x}$ or as $\lim _{x \rightarrow \infty} e^{-x} /(1 / x)$. To see that the exponent forms are indeterminate note that

$$
\ln 0^{0}=0 \ln 0=0(-\infty)=0 \cdot \infty, \quad \ln \infty^{0}=0 \ln \infty=0 \cdot \infty, \quad \ln 1^{\infty}=\infty \ln 1=\infty \cdot 0=0 \cdot \infty
$$

These formula's also suggest ways to compute these limits using L'Hopital's rule. Basically we use two things, that e^{x} and $\ln x$ are inverse functions of each other, and that they are continuous functions. If $\mathrm{g}(\mathrm{x})$ is a continuous function then $g\left(\lim _{x \rightarrow a} f(x)\right)=\lim _{x \rightarrow a} g(f(x))$.

For example let's figure out $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$. This is of the indeterminate form 1^{∞}. We write $\exp (x)$ for e^{x} so to reduce the amount exponents.

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\exp \left(\ln \left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right)\right)=\exp \left(\lim _{x \rightarrow \infty} \ln \left(\left(1+\frac{1}{x}\right)^{x}\right)\right) \\
=\exp \left(\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right)\right)=\exp \left(\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{1 / x}\right)
\end{gathered}
$$

We can now apply L'Hopital's since the limit is of the form $\frac{0}{0}$.

$$
=\exp \left(\lim _{x \rightarrow \infty} \frac{\left(1 /\left(1+\frac{1}{x}\right)\right)\left(-1 / x^{2}\right)}{-1 / x^{2}}\right)=\exp \left(\lim _{x \rightarrow \infty} 1 /\left(1+\frac{1}{x}\right)\right)=\exp (1)=e
$$

Exercises I. Find the limits.
A. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{3 x}$
B. $\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{x}$
C. $\lim _{x \rightarrow 0}(1+x)^{1 / x}$
D. $\lim _{x \rightarrow 0^{+}} x^{x}$
E. $\lim _{x \rightarrow 0^{+}} x^{\left(x^{2}\right)}$
F. $\lim _{x \rightarrow 0^{+}} x^{1 / \ln x}$.

One might be tempted to handle $\infty-\infty$ in a similar manner since

$$
e^{\infty-\infty}=\frac{e^{\infty}}{e^{\infty}}=\frac{\infty}{\infty}
$$

But L'Hopital's rule doesn't help here as the derivatives don't simplify. Instead, let $f(x)$ and $g(x)$ be functions so that $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=\infty$ so that $\lim _{x \rightarrow a}(f(x)-g(x))$ is $\infty-\infty$. One can rewrite $f(x)-g(x)$ as $f(x)(1-g(x) / f(x))$. The $\operatorname{limit}^{\lim } x_{x \rightarrow a} g(x) / f(x)$ is of the form $\frac{\infty}{\infty}$ and so we can use L'Hopital. If $\lim _{x \rightarrow a}(1-g(x) / f(x))=c \neq 0$ then $\lim _{x \rightarrow a} f(x)(1-g(x) / f(x))=c \lim _{x \rightarrow a} f(x)=\operatorname{sign}$ of $c \infty$ (sign of c is \pm depending on the sign of c. On the otherhand, if $c=0$, then $\mathrm{f}(\mathrm{x})(1-\mathrm{g}(\mathrm{x}) / \mathrm{f}(\mathrm{x}))$ is of the form $0 \cdot \infty$ which we already know how to reexpress so that Hopital's rule can be applied.

For example let's show that $\lim _{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x})=0$. This is of the indeterminate form $\infty-\infty$.

$$
\lim _{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x})=\lim _{x \rightarrow \infty} \sqrt{x}\left(\frac{\sqrt{x+1}}{\sqrt{x}}-1\right)=\lim _{x \rightarrow \infty} \sqrt{x}\left(\sqrt{1+\frac{1}{x}}-1\right)=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{1+\frac{1}{x}}-1\right)}{x^{-1 / 2}}
$$

Now we can use L'Hopital's rule.

$$
=\lim _{x \rightarrow \infty} \frac{\frac{-1 / x^{-2}}{2 \sqrt{1+1 / x}}}{(-1 / 2) x^{-3 / 2}}=\lim _{x \rightarrow \infty} \frac{2 x^{3 / 2} / x^{-2}}{2 \sqrt{1+1 / x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x} \sqrt{1+1 / x}}=0
$$

Exercises II. Find the limits.

$$
W \cdot \lim _{x \rightarrow \infty}\left((x+1)^{3}-x^{3}\right) \quad X \cdot \lim _{x \rightarrow \infty}(\ln (x+2)-\ln (x)) \quad Y \cdot \lim _{x \rightarrow \infty}\left(3^{x}-2^{x}\right) \quad Z \cdot \lim _{x \rightarrow 0}\left(x^{-2}-x^{-1}\right)
$$

