Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. For the vector $\mathbf{n}=\langle 4,-4,2\rangle$
a. Find a unit vector pointing the same direction.
b. Find the equation of the plane normal to \mathbf{n} and passing through the point $(1,2,-3)$.
2. Find the center and radius of the sphere with equation $x^{2}+4 x+y^{2}-6 y+z^{2}+12 z=0$.
3. Consider the plane $5 x-y+7 z=21$.
a. Find a point on the x-axis on this plane.
b. Find two other points on this plane.
c. Find a vector perpendicular to this plane.
d. Find a vector parallel to this plane.
4. Find the equation of the plane through the points $(1,1,1),(1,4,5)$ and $(-3,-2,0)$.
5. The following are filled contour plots of $f(x, y)=y, f(x, y)=y^{2}, f(x, y)=-y^{2}, f(x, y)=y^{3}$ and $f(x, y)=-y^{3}$. Lighter regions have higher z values. Match the plot to the function.

6. Find the equation of the linear function $f(x, y, z)=a x+b y+c z+d$ that has the values for the cross sections for $z=1$ and $z=4$ given below.

$z=1$	$x=3$	$x=5$
$y=0$	2	
$y=1$		0

$z=4$	$x=3$	$x=5$
$y=0$		
$y=1$	15	9

7. An airport is at the point $(200,10,0)$ and an approaching plane is at the point $(550,60,4)$. Assume the $x y$-plane is hortizontal, with the x-axis pointing eastward and the y-axis pointing northward. Also assume the z-axis is pointing upward and that all distances are measured in kilometers. The plane flies due west at a constant speed of $500 \mathrm{~km} / \mathrm{hr}$ for half an hour. It then decends at $200 \mathrm{~km} / \mathrm{hr}$, heading straight for the airport.
a. Find the velocity vector of the plane while it is flying at a constant altitude.
b. Find the coordinates of the point at which the plane starts to descend.
c. Find a vector representing the velocity of the plane when it is descending.
8. Find the 7 errors in the following Maple command. Assume that a restart command has just been given or equivalently that this is the very first line typed into Maple. (No "with(plots);" is not one of them.)
$\triangleright L: 8 ; p \operatorname{lot} 3 \mathrm{D}((\mathrm{x}-\mathrm{pi})(\mathrm{y}-3 \mathrm{x}), \mathrm{x}=-\mathrm{L} . \mathrm{L}, \mathrm{y}=\mathrm{L} . .-\mathrm{L}, \mathrm{z}=-\mathrm{L} . \mathrm{L}$, color=red);
9. A 100 -meter dash is run on a track in the direction of the vector $\mathbf{v}=2 \mathbf{i}+6 \mathbf{j}$. The wind velocity $\mathbf{w}=5 \mathbf{i}+\mathbf{j}$ $\mathrm{km} / \mathrm{hr}$. The rules say that a legal wind speed measured in the direction of the track must not exceed 5 $\mathrm{km} / \mathrm{hr}$. Will the race results be disqualified due to an illegal wind? Justify your answer.
10. Match the equation with its graph below (labeled I-VIII). Give reasons for your choices.
A. $x^{2}+4 y^{2}+9 z^{2}=1$
B. $9 x^{2}+4 y^{2}+z^{2}=1$
C. $x^{2}-y^{2}+z^{2}=1$
D. $-x^{2}+y^{2}-z^{2}=1$
E. $y^{2}=2 x^{2}+z^{2}$
F. $y=x^{2}+2 z^{2}$
G. $x^{2}+2 z^{2}=1$
H. $y=x^{2}-z^{2}$

