Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Find the equation of the tangent plane to $z=\sqrt{17-x^{2}-y^{2}}$ at $(x, y)=(3,2)$
2. Find a vector parallel to the intersection of the planes $2 x-3 y+5 z=2$ and $4 x+y-3 z=7$.
3. Find the directional derivative of $z=x^{2}-y^{2}$ at the point $(3,-1)$ in the direction making an angle $\theta=\pi / 4$ with the x-axis. In which direction is the directional derivative the largest?
4. A table of the critical points of the function $f(x, y)$ is given below along with values of various partial derivatives at these points. Also these values for the non-critical point $(0,0)$ are given. Give the quadratic Taylor polynomial for the function f about $(0,0)$. Also for each critical point of f decide if the point is a local mimimum, local maximum or a saddle point.

(x, y)	$f(x, y)$	$f_{x}(x, y)$	$f_{y}(x, y)$	$f_{x x}(x, y)$	$f_{x y}(x, y)$	$f_{y y}(x, y)$
$(0,1)$	0	0	0	1	2	0
$(0,-1)$	0	0	0	0	-2	0
$(1,0)$	-4	0	0	2	0	2
$(-1,0)$	4	0	0	-2	0	-2
$(0,0)$	2	-1	1	2	4	-6

5. Use the Chain Rule to find $\partial w / \partial u, \partial w / \partial u$ at $(u, v)=(1, \pi)$ and $d w / d t$ at $t=1$, if $w=f(x, y, z)=$ $3 x y+y z, x=\ln u+\cos v, y=1+u \sin v, z=u v, u=1+\sin (\pi t)$ and $v=\pi t^{2}$.
6. The graph A is a plot of ∇f, the gradient of f and the graph B is a contourplot of g. (Light regions have higher values than dark regions.] Find the co-ordinates of all extrema of f and g and LABEL them as either local minimums, local maximums or saddle points.

7. Use Lagrange Multipliers to find the maximum and minimum VALUES of $-3 x^{2}-2 y^{2}+20 x y$ on the line $x+y=100$, if they exist. If one or both don't exist explain why.
8. A table of the function $z=f(x, y)$ is below.

	$x=3$	$x=4$	$x=5$	$x=6$	$x=7$
$y=0$	0.6	0.0	0.6	1.3	3.0
$y=1$	1.0	0.8	1.0	2.0	3.8
$y=2$	3.0	2.6	3.0	4.0	5.6

AB. Find the Riemann sums which are the reasonable over- and under-estimates for the double integral $\int_{R} f(x, y) d A$ where the rectangle $R=\{(x, y): 3 \leq x \leq 7,0 \leq y \leq 2\}$.
C. Find the best estimate of the directional derivative of f at $(5,1)$ in the direction $(\mathbf{i}+\mathbf{j}) / \sqrt{2}$.
D. Find the best estimate of the directional derivative of f at $(5,1)$ in the direction $(-2 \mathbf{i}+\mathbf{j}) / \sqrt{5}$.
9. Maple questions.
A. What Maple command, or sequence of commands would you use to find the expression below?

$$
\frac{\partial^{3}}{\partial x \partial y^{2}} x \sin (y)
$$

B. What Maple command, or sequence of commands would you use to find the solution(s) to the system of equations below?

$$
\begin{aligned}
& x+y=5 \\
& x-y=1
\end{aligned}
$$

C. What Maple command, or sequence of commands would you use to find the double integral below?

$$
\int_{0}^{1} \int_{x^{2}}^{x} x^{100} y^{2} \mathrm{~d} y \mathrm{~d} x
$$

D. What is wrong and how do you fix the Maple command below?

$$
\text { plot (} x * \exp ^{\wedge} x, x=-4 . .1, \text { title='surprise', color=green) ; }
$$

E. You execute the Maple commands below. The picture (like below) shows the "normal vector" on top of a plane but the normal vector doesn't look perpendicular to the plane. How do you fix this?
with(plots):with(plottools):
$a:=p l o t 3 d(3-x-y, x=0.3, y=0.3): b:=\operatorname{arrow}([1,1,1],[2,2,2], .2, .4, .2)$: display(a,b);

10. A circular city has radius $r \mathrm{~km}$ and an average population density of ρ people $/ \mathrm{km}^{2}$. In 1997 the population was 3 million, the radius was 25 km and growing at $0.1 \mathrm{~km} /$ year. If the density was increasing at 200 people $/ \mathrm{km}^{2} /$ year, find the rate at which the total population was growing.

