Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. For the vector field $\mathbf{F}=\left\langle 2 x y^{3}+y, 3 x^{2} y^{2}+x\right\rangle$ find $\nabla \cdot \mathbf{F}$ (that is, $\operatorname{div} \mathbf{F}$) and either find a scalar field f so that $\mathbf{F}=\nabla f$ (that is, grad f) or show no such f exists.
2. For $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.
A. Find the velocity and acceleration of $\mathbf{r}(t)$.
B. Use numerical integration on your calculator to compute the length of this curve from $t=0$ to $t=2$.
3. Evaluate the integral below by changing to cylindrical coordinates.

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}}\left(z+\sqrt{x^{2}+y^{2}}\right) \quad d z d y d x
$$

4. Compute the flux of the vector field $\mathbf{F}=\langle 2,3,5\rangle$ through each of the rectangular regions in (A)-(D), assuming each is oriented as shown.

5. For the integral below, sketch the region of integration and then evaluate the integral by reversing the order of integration.

$$
\int_{0}^{3} \int_{y^{2}}^{9} y \sin \left(x^{2}\right) \quad d x d y
$$

6. Match the following vector fields with their flow lines. (a) $\langle y, x\rangle$ (b) $\langle-y, x\rangle$ (c) $\langle x, y\rangle$ (d) $\langle x-y, x-y\rangle$
(I)

(II)

(III)

(IV)

There is more test on the otherside
7. Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if $\mathbf{F}=\left\langle x^{2}-y, y^{2}+x^{2}\right\rangle$ and C is the counterclockwise boundry of the rectangle $0 \leq x \leq 2,0 \leq y \leq 3$.
8. Use the Divergence Theorem to evaluate the flux integral $\iint_{S}\left\langle x^{2}, y-2 x y, 10 z\right\rangle \cdot d \mathbf{A}$, where S is the sphere of radius 5 centered at the origin, oriented outwards.
9. (Set up and simplify the integral, but do NOT evaluate the integral.) Find the flux when $\mathbf{F}=\langle 3 x, y, z\rangle$ and S is the surface given by $z=-2 x-4 y+1$ above the triangle in the $x y$-plane with vertices $(0,0),(0,2)$ and (1,0).
10. Consider the parametric equations for $0 \leq t \leq \pi$.
(I) $\langle\cos (2 t), \sin (2 t)\rangle$ (II) $\langle 2 \cos (t), 2 \sin (t)\rangle$ (III) $\langle\cos (t / 2), \sin (t / 2)\rangle$ and (IV) $\langle 2 \cos (t),-2 \sin (t)\rangle$.
A. Match the equations above with four of the curves A, B, C, D, E and F in graph below.
B. Give parametric equations for the curves which have not been matched, again assuming $0 \leq t \leq \pi$.

