Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. New series from old ${ }_{1}$: Write down the Taylor series for $\cos x$ and use it find the Taylor series for $\cos \sqrt{|x|}$. (Make sure your last answer has no square roots or absolute values.) For small positive x, which is bigger $\cos x$ or $\cos \sqrt{x}$?
2. A two meter rod has density function $\rho(x)=x^{2} k g / m$ where x is the distance from the left end. Find the mass (in kg) and the center of mass (in m) of the rod.
3. Find both $h^{\prime \prime \prime}(0)$. and the radius of convergence of the power series below

$$
h(x)=\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{3^{n}}=\frac{x}{3}+\frac{4 x^{2}}{9}+\frac{9 x^{3}}{27}+\frac{16 x^{4}}{81}+\ldots
$$

4. Write the integral and use your calculator's numeric integration to evaluate the integral which yields the arclength of one period of the $\sin (x)$ function.
5. New series from old ${ }_{2}$: You are given the Taylor series for the functions f and g below.

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} n x^{n}=x+2 x^{2}+3 x^{3}+4 x^{4}+\ldots \\
& g(x)=\sum_{n=1}^{\infty} n^{2} x^{n}=x+4 x^{2}+9 x^{3}+16 x^{4}+\ldots
\end{aligned}
$$

a. Show the long division needed to get the first 4 non-zero terms of f / g.
b. Find the Taylor series for $\int_{0}^{x} f(t) / t d t$.
6. Write but do NOT evaluate integrals which will compute the volume of the figure obtained by rotating the area (below left) between $y=\sqrt{8(x-3)}, 3 \leq x \leq 5$ and the x-axis about A. The x-axis. B. The y-axis.

7. Find the work (in N-m (Newton-meters)) done pumping all the water out of a full fish tank (above right) that has the shape of a hemisphere of radius 1 meter. The density of water, ρ, is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and g, acceleration due to gravity, is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
8. Find the first two non-zero terms of the Taylor series for the functions $\sin x, \tan x, x /(1-x)$ and $2 \sqrt{1+x}-2$ and then match the functions to the graphs below (the thin dotted line is $y=x$).

9. Find exact values for the sum of the following series.

$$
\begin{aligned}
& A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
& B=1+0.1+\frac{(0.1)^{2}}{2!}+\frac{(0.1)^{3}}{3!}+\ldots \\
& C=\frac{42}{100}+\frac{42}{10000}+\frac{42}{1000000}+\frac{42}{100000000}+\ldots \\
& D=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \\
& E=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots
\end{aligned}
$$

density

10. The failure rate of a electronic device often has a decaying exponential probability density $\rho(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ and $\rho(x)=0$ for $x<0$ (see above). For this problem, let $\lambda=1 / 100$ and let x be time in seconds.
a. Find the percent of failures in the first 3 seconds.
b. Find the mean for this density.
c. A electronic supply firm wants to "burn in" each device T seconds before selling so that 99% of the failures happen during the "burn in" period. Find T.

