
ADDITIVELY SEPARABLE FUNCTIONS
FUNCTIONS OF THE FORM F (x, y) = f(x) + g(y)

STEVEN F. BELLENOT

Abstract. A sample project similar to the project for Spring 2005. The picture below
has a hortizontal space coordinate s and vertical time coordinate t. We see two waves,
a raised hump moving to the left and a depression moving to the right. At t = 0, the
middle hortizontal bold black line, the two waves cancel each other briefly. From another
viewpoint, the red line is the x-axes and the red curve above it is f(x) = exp(−x2), the
blue line is the y-axes and the blue curve below it is g(y) = − exp(−y2). The surface is
the graph of F (x, y) = f(x) + g(y), a additively separable function; but also a solution to
a wave equation.
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2 Additively Separable Functions

Introduction

We consider a simple special class of functions of two variables, those that can be written
in the form F (x, y) = f(x)+g(y). (Your project will be about functions that can be written
in the form F (x, y) = f(x)g(y).) This is perhaps the simplest collection of functions of two
variables that depends on both variables. Our first step is to give a name to the collection,
since this collection is not usually studied, we get to make up a name.

Definition 1. A function of two variables F (x, y) will be called additively separable if
it can written as f(x) + g(y) for some single-variable functions f(x) and g(y).

After a definition one usually adds some simple observations to aid the reader to get a
feel for the topic. Note that constant functions like F (x, y) = 5 or functions of one variable
F (x, y) = h(y) are additively separable. Indeed, let f(x) = 0 and g(y) = 5 or g(y) = h(y) in
the definition. But not all functions are additively separable, later we will see F (x, y) = xy
is not additively separable. Finally, the functions f(x) and g(y) in the definition are never
unique, since if F (x, y) = f(x) + g(y), then also F (x, y) = (f(x) + C) + (g(x)−C) for any
constant C.

This collection is surprisingly rich. We start with a few examples, Figure 1 shows that
such functions can look fully three dimensional. This is surprising, since for fixed x = a,
each cross section F (a, y) is g(y) + C a translate of the function g(y) with C = f(a). That
is the sections x = a for different parameters a all wave to the same time steps.

The tangent plane to z = h(x, y) at any point (a, b, h(a, b)) is additively separable since
is always of the form z = hx(a, b)(x − a) + hy(a, b)(y − b) + h(a, b). (So we could take
f(x) = hx(a, b)(x− a) and g(y) = hy(a, b)(y − b) + h(a, b). Remember a, b, h(a, b), hx(a, b)
and hy(a, b) are all constants and not variables.)

The three basic extrema, local minimums, local maximums and saddle points, are often
drawn like in Figure 2. These are graphs of the functions F (x, y) = −x2−y2, showing a local
maximum at (0, 0), F (x, y) = x2−y2, showing a saddle point at (0, 0), and F (x, y) = x2+y2,
showing a local minimum (0, 0). All three functions are additively separable. The last
function in polar coordinates is just r2 which is curious. A function of one variable in one
coordinate system which is a nice additively separable in a radically different coordinate
system. Neither r =

√
x2 + y2, r3, nor even r4 = x4 + 2x2y2 + y4 is additively separable.

Rectangle Conditions

When is a function F (x, y) additively separable? A simple necessary condition is obtained
by assuming F (x, y) = f(x) + g(y) and then playing with its values at the four corners of
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Figure 1. The graph of sin x + sin y (left) and selected cross sections (right)
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Figure 2. Local Max, Saddle and Local Min

a rectangle {(a, b), (c, b), (c, d), (a, d)} (see Figure 3). We have

F (c, b)+F (a, d)−F (a, b) = (f(c)+g(b))+(f(a)+g(d))−(f(a)+g(b)) = f(c)+g(d) = F (c, d)

which we can write as a theorem.
Theorem 2. If F (x, y) is additively separable, then for all a, b, c, d, F (c, b) + F (a, d) −
F (a, b) = F (c, d).

Using a = b = 0 and c = d = 1 we see F (x, y) = xy is not additively separable. as the
left hand side is zero, while the right hand side is one.

Theorem 2 has a converse which is also true. Let f(x) = F (x, 0) and g(y) = F (0, y) −
F (0, 0) and use the theorem with x = c, y = d and a = b = 0. We have

F (x, y) = F (x, 0) + F (0, y) − F (0, 0) = f(x) + g(y)

which we can write as another theorem.
Theorem 3. If for all a, b, c, d, F (c, b)+F (a, d)−F (a, b) = F (c, d), then F (x, y) is additively
separable.

Derivative conditions

Obviously if F (x, y) = f(x) + g(y) then the partial derivatives of F are easy to compute.
Fx = f ′(x) since g(y) is constant as a function of x. Similarly Fy = g′(y), Fxx = f ′′(x),
Fyy = g′′(y) and more importantly Fxy = Fxy = 0. Again lets make this a theorem.
Theorem 4. If F (x, y) is additively separable, then

∂2F

∂x∂y
= 0

Again we see F (x, y) = xy is not additively separable since Fxy = 1 6= 0.
Theorem 4 says all additively separable functions satisfy a simple PDE (Partial Differen-

tial Equation). The converse is also true. First remember from one variable that f ′(x) = 0

(a, b)

(a, d)

(c, b)

(c, d)

Figure 3. The sum of the values at the diagonally opposite corners are equal
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means that f(x) is a constant. For a function of two variables Gy(x, y) = 0 means that
G(x, y) is a constant function of y but can be an arbitrary function of x. So Fxy = (Fx)y = 0
means Fx = h(x) some arbitrary function of x and hence F (x, y) = f(x) + g(y) where g(y)
is some arbitrary function of y and f ′(x) = h(x) (so f(x) =

∫ x
a h(t) dt). Lets state this as

another theorem
Theorem 5. If F (x, y) satisfys the PDE

∂2F

∂x∂y
= 0

then F (x, y) is additively separable,

The Wave Equation

It turns out this PDE is really a famous PDE in disguise. With a a change of coordinates,
this PDE becomes the one dimensional wave equation. The solutions to the one dimension
wave equation can have two components, a wave function moving to the right (the g(y))
and another wave function moving to the left (the f(x)). Figure 4 shows the function
f(x) = exp(−x2), g(y) = − exp(−y2), F (x, y) = f(x) + g(y) along with the curve at several
times. The t = 0 graph is the bold straight line in the middle. Times before zero are below
and in front of t = 0 and times after zero are above and behind. So time increase as we
go up Figure 4 The space dimension shows the leftward motion of the wave. This is too
important a fact to not show the connection, and it is a good application of the chain rule
for several variables, but this section is not used in the sequel. The graph in Figure 4 (also
on the cover) page shows raised wave moving to the left and depression moving to the right.
The x-axis is red, the y-axis is blue and the function is F (x, y) = exp(−x2) − exp(−y2).
Time increases as one goes up the page and the one space dimension is hortizontal.

The change of coordinates is given by t = x + y (time) and s = x − y is the one space
dimension. Inverting this transformation gives x = (s + t)/2 and y = (t− s)/2. Using the
chain rule

∂F

∂s
=

∂F

∂x

∂x

∂s
+

∂F

∂y

∂y

∂s
=

(
∂F

∂x
− ∂F

∂y

)
1
2

∂F

∂t
=

∂F

∂x

∂x

∂t
+

∂F

∂y

∂y

∂t
=

(
∂F

∂x
+

∂F

∂y

)
1
2

To take second partials Fss, the equation becomes messy since we have to apply the chain
rule to Fx and Fy since they are functions of both x and y as well as applying the product
rule.

∂2F

∂s2
=

(
∂2F

∂x2

∂x

∂s
+

∂2F

∂y∂x

∂y

∂s

)
∂x

∂s
+

∂F

∂x

∂2x

∂s2
+

(
∂2F

∂x∂y

∂x

∂s
+

∂2F

∂y2

∂y

∂s

)
∂y

∂s
+

∂F

∂y

∂2y

∂s2

Since Fxy = xss = yss = 0 This simplifys to

∂2F

∂s2
=

∂2F

∂x2

(
∂x

∂s

)2

+
∂2F

∂y2

(
∂y

∂s

)2

= (
∂2F

∂x2
+

∂2F

∂y2
)
1
4

Similarly
∂2F

∂t2
==

(
∂2F

∂x2
+

∂2F

∂y2

)
1
4
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Figure 4. The space dimension is hortizontal, the time vertical, the red
line is the x-axes and the blue line is the y-axes

and we have the one dimensional wave equation

∂2F

∂s2
=

∂2F

∂t2

The two forms of the wave equation are equivalent, although we have shown only one
direction. Usually the wave equation has a constant c which represents the speed of the
waves, in our case this c = 1. It is more common to see the wave equation written as

∂2F

∂s2
=

1
c2

∂2F

∂t2

Critical Points and local extrema

Here is one of sections that you will need to do for your project on functions of the
form f(x)g(y). We want to characterize the local extrema of additively separable functions
F (x, y) = f(x) + g(y) in terms of the critical points of f(x) and g(y). From the derivatives
section we have
Theorem 6. The point (a, b) is a critical point of F (x, y), if and only if both x = a is a
critical point of f(x) and y = b is a critical point of g(y).

To use the several variables classification function, big D = FxxFyy−F 2
xy, we use Fxy = 0

and the other second partials from the derivatives section to compute big D = f ′′(x)g′′(y).
As long as big D is not zero, namely when both f ′′(a) 6= 0 6= g′′(b). We cover all cases in
the table below which is only for critical points (a, b).
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x y x y x y x y

Figure 5. The four basic cases: when big D 6= 0

f ′′(a) g′′(b) big D Classification
+ + + Local Min
+ − − Saddle
− + − Saddle
− − + Local Max

Clearly these crition are nicely illustrated by sin x + sin y in Figure 1 at the points
(π/2, π/2), (π/2, 3π/2), (3π/2, π/2) and (3π/2, 3π/2).

The additively separable functions are simple enough we can handle the general case with
Taylor series. If a is a critical point for f(x) then f ′(a) = 0, let f (n)(a) = an 6= 0 be the first
non-zero higher derivative of f at a. (Similarly let m be the first non-zero higher derivative
of g at b and let g(m)(b) = bm 6= 0.) Taylor says f(x) ≈ f(a) + an(x − a)n. So if n is odd
this is like x3 at 0, the critical point x = a is neither a local min nor a a local max. This is
because an(x− a)n will be positive on one side of a and negative on the other side of a. If
n is even, the point is a local min if an > 0 and a local max if an < 0. Our more complete
collection is summarized in Table below.

n an m bm Classification
even + even + Local Min
even + even − Saddle
even + odd ± Saddle
even − even + Saddle
even − even − Local Max
even − odd ± Saddle
odd ± even + Saddle
odd ± even − Saddle
odd ± odd ± Saddle

But a better statement is the following theorem
Theorem 7. The critical point (a, b) of the additive separable function F (x, y) = f(x)+g(y)
is a local max [respectively local min], if and only if, both a is a local max [respectively local
min] for f(x) and b is a local max[respectively local min] for g(y). Otherwise the point (a, b)
is a saddle point for F (x, y).

Basically this says if F (x, y) ≤ F (a, b) for (x, y) nearby (a, b) then f(x)+g(b) = F (x, b) ≤
F (a, b) = f(a) + g(b) so f(x) ≤ f(a) and similarly g(y) ≤ g(b). Conversely if f(x) ≤ f(a)
and g(y) ≤ g(b) then f(x) + g(y) ≤ f(a) + g(b) or F (x, y) ≤ F (a, b).

Theorem 7 is false for functions in general. The function F (x, y) = xy has both F (x, 0) =
0 and F (0, y) = 0 so that x = 0 is both a local min and local max for F (x, 0) = 0 and y = 0



Additively Separable Functions 7

x y

Figure 6. Some of the odd power cases: note big D = 0

is both a local min and local max for F (0, x) = 0 and yet (0, 0) is clearly a saddle point for
F .

Closure and Uniqueness Properties

This is a bonus section and is off the topic. Closure properties say what can you do a
class or collection and still remain in the collection. For example, if F (x, y) and G(x, y) are
both additively separable then so is F (x, y)+G(x, y), but not every product F (x, y)G(x, y)
is additively separate. Multiplication by a constant C is ok, since CF (x, y) is additively
separable whenever F is additively separable. Also partial derivatives and integrals of
additively separable functions are additively separable. We summarize in the next theorem.
Theorem 8. The collection of additively separable functions is closed under the following
operations. (The first two make the collection a Linear space.)

(1) addition
(2) multiplication by constants
(3) partial derivatives with respect to x or y
(4) integrals with respect to dx or dy

Here is a uniqueness question, let L be any line in the xy-plane which is not parallel to
the x or y axis. If the additively separable function F (x, y) is zero on all points on L and the
directional derivative of F in the direction normal to L is also zero on L, then must F (x, y)
be identically zero everywhere? The picture on the cover page, shows it is not enough for
F to be zero on one line.
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Your optional group assignment

This is a group project. Groups are 3-4 people except in unusual cases. Individual
projects are not accepted. The work on the project must be a true collaboration in which
each member of the team will carry their own weight. It is NOT acceptable for the team
members to split the project between them and work on them independently. Instead all
members must actively work together on all parts of the assignment.

The fact that group members have to work together means that you need to carefully
consider a potential group member’s schedule before forming the group. You cannot be a
group if you cannot find large chunks of time to spend together.

Your assignment is to write in prose, in understandable English, a typed report about
separation of variables, that is functions of the form F (x, y) = f(x)g(y). There are three
parts to the assignment. First you must do the local extrema for functions of the form
f(x)g(y), note that this is harder than the case for functions of the form f(x) + g(y)
done above. Second, you must find something interesting about about such functions,
unfortunately one cannot just take logs and translate a additively separable result via
ln(f(x)g(y)) = ln f(x) + ln g(y) since logs are only defined for positive values. This fact
must be strong enough to show that x + y cannot be written in the form f(x)g(y). Third,
you must research and find a place where separation of variables is used outside the ordinary
differential equation case you might have learned in Calculus 2.

The project has two due dates: A hardcopy outline which lists who is in your group and
what your project is going to contain is due on Friday 25 March at 3pm and the completed
hardcopy project itself is due on Friday 8 April also at 3pm. (The project must be bound
or stapled and not loose, nor dog-eared. Part of the grade will be based on presentation
and clarity. There are a few bonus points available for wow value.)

In addition to the project, EACH team member will write a separate evaluation of the
relative contributions of all the team members.


