Generalized Eigenvectors

1. Example Consider the 2×2 matrix

$$
A=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

The matrix A has characteristic polynomial λ^{2} and hence its only eigenvalue is 0 . The eigenvectors for the eigenvalue 0 have the form $\left[x_{2}, x_{2}\right]^{T}$ for any $x_{2} \neq 0$. Thus the eigenspace for 0 is the one-dimensional $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ which is not enough to span all of \mathbb{R}^{2}. However A^{2} is the zero matrix so $A^{2} \vec{v}=(A-0 I)^{2} \vec{v}=0$ for all vectors \vec{v}. If we let \vec{v}_{2} be $[1,-1]^{T}$ (or any other vector outside the eigenspace), then $A \vec{v}_{2}$ is in the eigenspace so it is $a[1,1]^{T}$ for some a (2 in this case). If we let $\vec{v}_{1}=[1,1]^{T}$, and $P=\left[\vec{v}_{1}, \vec{v}_{2}\right]$ and we can write $A=P B P^{-1}$ where $B=\left[\begin{array}{ll}\lambda & a \\ 0 & \lambda\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
0.5 & 0.5 \\
0.5 & -0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

(It is more usual in this case to pick \vec{v}_{2} so that it solves $A \overrightarrow{v_{2}}=\vec{v}_{1}$. This will make $a=1$, and perhaps $\vec{v}_{2}=[1,0]^{T}$ which yields a slightly different equation)

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

2. Theorem If A is a 2×2 matrix with repeated eigenvalue λ but whose eigenspace is only one-dimension and spanned by the eigenvector \vec{v}_{1}. Let \vec{v}_{2} be a solution to $(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}$, Let $P=\left[\vec{v}_{1}, \vec{v}_{2}\right]$ and let $B=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$ then

$$
A=P B P^{-1}
$$

(and as usual we check the construction using $A P=P B$.)
3. Problems Compute the eigenvalues For the given 2×2 matrices A and decide if the theorem above applies. If the theorem applies find B and P, and if the theorem does not find the usual diagonal D and P. Check your answers.
(a) $A=\left[\begin{array}{cc}7 / 2 & -1 / 2 \\ 1 / 2 & 5 / 2\end{array}\right]$
(b) $A=\left[\begin{array}{cc}11 / 2 & 1 / 2 \\ -1 / 2 & 13 / 2\end{array}\right]$
(c) $A=\left[\begin{array}{cc}5 & -1 \\ 0 & 5\end{array}\right]$
(d) $A=\left[\begin{array}{cc}-5 / 2 & 1 / 2 \\ -1 / 2 & -3 / 2\end{array}\right]$
4. Definition To handle this problem we generalize notion of an eigenvector to a generalized eigenvector we say a non-zero vector \vec{v} is a generalized eigenvector for A corresponding to λ if

$$
(A-\lambda I)^{k} \vec{v}=0
$$

for some positive integer k. The smallest such k is the order of the generalized eigenvector. Note that a regular eigenvector is a generalized eigenvector of order 1 . The vector \vec{v}_{2} in the theorem above is a generalized eigenvector of order 2. Since $(D-I)\left(t e^{t}\right)=\left(e^{t}+t e^{t}\right)-t e^{t}=e^{t} \neq 0$ and $(D-I) e^{t}=0$, $t e^{t}$ is a generalized eigenvector of order 2 for D and the eigenvalue 1 .

The simplest case is when $\lambda=0$ then we are looking at the kernels of powers of A. It is easy to see that the chain of subspaces

$$
\{0\}=\operatorname{ker} A^{0} \subseteq \operatorname{ker} A^{1} \subseteq \cdots \subseteq \operatorname{ker} A^{k} \subseteq \operatorname{ker} A^{k+1} \subseteq \cdots \subseteq \mathbb{R}^{n}
$$

are all subspaces of the big vector space. Because if $A^{k} \vec{v}=0$ then $A^{k+1} \vec{v}=A\left(A^{k} \vec{v}\right)=A 0=0$. Also note that eventually $\operatorname{ker} A^{k}=\operatorname{ker} A^{k+j}$ for all positive integers j because the dimensions are all less than or equal to n. (This can fail in infinite dimensions.)
But it is easy to show the stronger result that if $\operatorname{ker} A^{k}=\operatorname{ker} A^{k+1}$ then $\operatorname{ker} A^{k+1}=\operatorname{ker} A^{k+2}$. Let $\vec{v} \in \operatorname{ker} A^{k+2}$, then $A \vec{v} \in \operatorname{ker} A^{k+1}=\operatorname{ker} A^{k}$ so $A^{k}(A \vec{v})=0$ and hence $A^{k+1} \vec{v}=0$ so \vec{v} is in ker $A^{k+1}=$ $\operatorname{ker} A^{k}$. So for each eigenvalue, there is a largest order.
There is one more requirement on the dimensions of these spaces which we will illustrate with $k=1$ and $k=2$. Let $\left\{\vec{v}_{1}, \ldots \vec{v}_{s}\right\}$ be a basis for $\operatorname{ker} A \neq \operatorname{ker} A^{2}$ and we add $\vec{v}_{s+1}, \ldots \vec{v}_{s+t}$ until $\left\{\vec{v}_{1} \ldots \vec{v}_{s+t}\right\}$ is a basis for $\operatorname{ker} A^{2}$. So ker A is s-dimensional and ker A^{2} is $s+t$-dimensional. The additional requirement is that $t \leq s$.
If $t>s$ then $\left\{A \vec{v}_{s+1}, \ldots A \vec{v}_{s+t}\right\}$ must be linearly dependent in ker A. So there are scalars $c_{s+1}, \ldots c_{s+t}$ not all zero so that

$$
\begin{gathered}
c_{s+1} A \vec{v}_{s+1}+\cdots c_{s+t} A \vec{v}_{s+t}=0 \\
A\left(c_{s+1} \vec{v}_{s+1}+\cdots c_{s+t} \vec{v}_{s+t}\right)=0 \\
c_{s+1} \vec{v}_{s+1}+\cdots c_{s+t} \vec{v}_{s+t} \in \operatorname{ker} A \\
c_{s+1} \vec{v}_{s+1}+\cdots c_{s+t} \vec{v}_{s+t}=c_{1} \vec{v}_{1}+\cdots c_{s} \vec{v}_{s}
\end{gathered}
$$

for some $c_{1}, \ldots c_{s}$ since $\left\{\vec{v}_{1}, \ldots \vec{v}_{s}\right\}$ is a basis for ker A. But this is a contradiction to $\left\{\vec{v}_{1}, \ldots \vec{v}_{s+t}\right\}$ being linearly independent.

Other facts without proof. The proofs are in the down with determinates resource. The dimension of generalized eigenspace for the eigenvalue λ (the span of all all λ generalized eigenvectors) is equal to the number of times λ is a root to the characteristic polynomial. If $\vec{v}_{1}, \ldots \vec{v}_{s}$ are generalized eigenvectors for distinct eigenvalues $\lambda_{1}, \ldots \lambda_{s}$, then $\left\{\vec{v}_{1}, \ldots \vec{v}_{s}\right\}$ is linearly independent. Each matrix A is similar to block diagonal matrix where each non-zero block B_{j} corresponds to the generalized eigenspace of a distinct eigenvalue λ_{j}.
$\left[\begin{array}{c|c|l|c}B_{1} & 0 & \cdots & 0 \\ \hline 0 & B_{2} & \cdots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \cdots & B_{s}\end{array}\right]$

We list all a sequence of 4×4 matrices that could be B in a 4 -dimensional version of our theorem above.

$$
\left[\begin{array}{c|c|c|c}
\lambda & 0 & 0 & 0 \\
\hline 0 & \lambda & 0 & 0 \\
\hline 0 & 0 & \lambda & 0 \\
\hline 0 & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{cc|c|c}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
\hline 0 & 0 & \lambda & 0 \\
\hline 0 & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{cc|cc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
\hline 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{ccc|c}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 0 \\
\hline 0 & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right]
$$

Note that there are non-zero entries only on the main diagonal and on the diagonal just above the main diagonal. This diagonal is sometimes called the super diagonal.
5. Bigger Example Consider the matrix A, eventually A has characteristic polynomial $(\lambda-5)^{5}(\lambda+2)$.

$$
A=\left[\begin{array}{cccccc}
5 & 1 & 0 & 0 & 0 & 0 \\
0 & 5 & 1 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 1 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

The eigenvalue -2 has a one-dimension eigenspace spanned by $v_{6}=[0,0,0,0,0,1]^{T}$, the eigenvalue 5 has a two-dimensional space spanned by $v_{1}=[1,0,0,0,0,0]^{T}$ and $v_{4}=[0,0,0,1,0,0]^{T}$. The subspace $\operatorname{ker}(A-5 I)^{2}$ is spanned by four vectors v_{1}, v_{4} and the order 2 generalized eigenvectors $v_{2}=[0,1,0,0,0,0]^{T}$ and $v_{5}=[0,0,0,0,1,0]^{T}$. While the subspace $\operatorname{ker}(A-5 I)^{3}$ is spanned by five vectors $v_{1}, v_{2}, v_{4}, v_{5}$ and the order 3 generalize eignevector $v_{3}=[0,0,1,0,0,0]^{T}$. Any non-zero vector of the form $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, 0\right]^{T}$ is a generalized eigenvector for the eigenvalue 5 .
There are a couple of ways to work on these problems. One is to backtract from generalized eigenvector of order k to generalize eigenvector of order $k+1$ as needed. Sometimes, trial and error is the fastest method.
6. Problems part 2 For each $n \times n$ matrix, find a basis of \mathbb{R}^{n} consisting of generalized eigenvectors.
(a) $A=\left[\begin{array}{ccc}3 & 1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right]$
(b) $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$
(c) $A=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$
(d) $A=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
(e) $A=\left[\begin{array}{llll}1 & 2 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
(f) $A=\left[\begin{array}{cccc}-1 & 0 & 2 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 2\end{array}\right]$

7. True or False Problems

(a) An eigenvector is a generalized eigenvector.
(b) If $A^{2} \vec{v}=0$ and $\vec{v} \neq 0$ then \vec{v} is a generalized eigenvector of order 2 for the eigenvalue 0 of A.
(c) Sometimes $\operatorname{dim} \operatorname{ker} A^{2}>\operatorname{dim} \operatorname{ker} A$.
(d) Sometimes $\operatorname{dim} \operatorname{ker} A^{2}>2 \operatorname{dim} \operatorname{ker} A$.
(e) $t e^{-2 t}$ is a generalized eigenvector of order 2 for the eigenvalue -2 of the derivative operator D.
(f) If \vec{v} is a generalized eigenvector of order k for the eigenvalue λ then λ is a root at least k times to the characteristic polynomial.
(g) If λ is a root k times of the characteristic polynomial of the matrix A, then A has a generalized eigenvalue of order k.
(h) If \vec{v} is a generalize eigenvector of order k for λ and A then $(A-\lambda I) \vec{v}$ is a generalized eigenvector of order $k+1$.
(i) The matrix $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable.
8. Answers These answers are not unique.
(a) Characteristic polynomial $p(\lambda)=(\lambda-3)^{2}$ which has a one dimensional eigenspace spanned by $v_{1}=[1,1]^{T}$. There are many choices possible for v_{2}, how about $v_{2}=[2,0]^{T}$. then $B=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ and $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$. Checking $A P=\left[\begin{array}{ll}3 & 7 \\ 3 & 1\end{array}\right]$ and $P B=\left[\begin{array}{ll}3 & 7 \\ 3 & 1\end{array}\right] \checkmark$
(b) Repeated eigenvalue $\lambda=6, v_{1}=[1,1]^{T}, v_{2}=[0,2]^{T} B=\left[\begin{array}{ll}6 & 1 \\ 0 & 6\end{array}\right]$ and $P=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$
(c) Repeated eigenvalue $\lambda=5, v_{1}=[1,0]^{T}, v_{2}=[0,-1]^{T} B=\left[\begin{array}{ll}5 & 1 \\ 0 & 5\end{array}\right]$ and $P=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(d) Repeated eigenvalue $\lambda=-2, v_{1}=[1 / 2,1 / 2]^{T}, v_{2}=[1,2]^{T} B=\left[\begin{array}{cc}-2 & 1 \\ 0 & -2\end{array}\right]$ and $P=\left[\begin{array}{ll}1 / 2 & 1 \\ 1 / 2 & 2\end{array}\right]$
9. Answers part 2 The answers are not unique, but there is a logic to answers choosen, it is so the super-diagonal entries of something would be one. Careful, these answers were machine generated and not yet checked.
(a) $\lambda=2$ order $k=1\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \lambda=3$ order $k=1\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and order $k=2\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
(b) $\lambda=3$ order $k=1\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, order $k=2\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and order $k=3\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
(c) $\lambda=3$ order $k=1\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, order $k=2\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and order $k=1\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
(d) $\lambda=2$ order $k=1\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right], \lambda=1$ order $k=1\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$, order $k=2\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ and order $k=3\left[\begin{array}{c}0 \\ -1 / 2 \\ -2 \\ 1\end{array}\right]$

10. True or False answers

(a) True, an eigenvector is a generalized eigenvector of order 1.
(b) False, it could be order 1.
(c) True.
(d) False, otherwise $t>s$.
(e) True.
(f) True.
(g) False, consider the identity matrix for example.
(h) False, it goes the wrong way $(A-\lambda I) \vec{v}$ has order $k-1$.
(i) False.

