
Generalized Eigenvectors

1. Example Consider the 2× 2 matrix

A =
[
1 −1
1 −1

]
The matrix A has characteristic polynomial λ2 and hence its only eigenvalue is 0. The eigenvectors for
the eigenvalue 0 have the form [x2, x2]T for any x2 6= 0. Thus the eigenspace for 0 is the one-dimensional

span{
[
1
1

]
} which is not enough to span all of R2. However A2 is the zero matrix so A2~v = (A−0I)2~v = 0

for all vectors ~v. If we let ~v2 be [1,−1]T (or any other vector outside the eigenspace), then A~v2 is in
the eigenspace so it is a [1, 1]T for some a (2 in this case). If we let ~v1 = [1, 1]T , and P = [~v1, ~v2] and

we can write A = PBP−1 where B =
[
λ a
0 λ

]
[
1 −1
1 −1

]
=
[
0.5 0.5
0.5 −0.5

] [
0 2
0 0

] [
1 1
1 −1

]
(It is more usual in this case to pick ~v2 so that it solves A~v2 = ~v1. This will make a = 1, and perhaps
~v2 = [1, 0]T which yields a slightly different equation)[

1 −1
1 −1

]
=
[
0 1
1 −1

] [
0 1
0 0

] [
1 1
1 0

]
2. Theorem If A is a 2×2 matrix with repeated eigenvalue λ but whose eigenspace is only one-dimension

and spanned by the eigenvector ~v1. Let ~v2 be a solution to (A − λI)~v2 = ~v1, Let P = [~v1, ~v2] and let

B =
[
λ 1
0 λ

]
then

A = PBP−1

(and as usual we check the construction using AP = PB.)

3. Problems Compute the eigenvalues For the given 2 × 2 matrices A and decide if the theorem above
applies. If the theorem applies find B and P , and if the theorem does not find the usual diagonal D
and P . Check your answers.

(a) A =
[
7/2 −1/2
1/2 5/2

]
(b) A =

[
11/2 1/2
−1/2 13/2

]
(c) A =

[
5 −1
0 5

]
(d) A =

[
−5/2 1/2
−1/2 −3/2

]
4. Definition To handle this problem we generalize notion of an eigenvector to a generalized eigenvector

we say a non-zero vector ~v is a generalized eigenvector for A corresponding to λ if

(A− λI)k~v = 0

for some positive integer k. The smallest such k is the order of the generalized eigenvector. Note that
a regular eigenvector is a generalized eigenvector of order 1. The vector ~v2 in the theorem above is a
generalized eigenvector of order 2. Since (D− I)(tet) = (et + tet)− tet = et 6= 0 and (D− I)et = 0, tet

is a generalized eigenvector of order 2 for D and the eigenvalue 1.



The simplest case is when λ = 0 then we are looking at the kernels of powers of A. It is easy to see
that the chain of subspaces

{0} = kerA0 ⊆ kerA1 ⊆ · · · ⊆ kerAk ⊆ kerAk+1 ⊆ · · · ⊆ Rn

are all subspaces of the big vector space. Because if Ak~v = 0 then Ak+1~v = A(Ak~v) = A0 = 0. Also
note that eventually kerAk = kerAk+j for all positive integers j because the dimensions are all less
than or equal to n. (This can fail in infinite dimensions.)

But it is easy to show the stronger result that if kerAk = kerAk+1 then kerAk+1 = kerAk+2. Let
~v ∈ kerAk+2, then A~v ∈ kerAk+1 = kerAk so Ak(A~v) = 0 and hence Ak+1~v = 0 so ~v is in kerAk+1 =
kerAk. So for each eigenvalue, there is a largest order.

There is one more requirement on the dimensions of these spaces which we will illustrate with k = 1
and k = 2. Let {~v1, . . . ~vs} be a basis for kerA 6= kerA2 and we add ~vs+1, . . . ~vs+t until {~v1 . . . ~vs+t} is a
basis for kerA2. So kerA is s-dimensional and kerA2 is s+ t-dimensional. The additional requirement
is that t ≤ s.
If t > s then {A~vs+1, . . . A~vs+t} must be linearly dependent in kerA. So there are scalars cs+1, . . . cs+t
not all zero so that

cs+1A~vs+1 + · · · cs+tA~vs+t = 0

A(cs+1~vs+1 + · · · cs+t~vs+t) = 0

cs+1~vs+1 + · · · cs+t~vs+t ∈ kerA

cs+1~vs+1 + · · · cs+t~vs+t = c1~v1 + · · · cs~vs
for some c1, . . . cs since {~v1, . . . ~vs} is a basis for kerA. But this is a contradiction to {~v1, . . . ~vs+t} being
linearly independent.

Other facts without proof. The proofs are in the down with determinates resource. The dimension of
generalized eigenspace for the eigenvalue λ (the span of all all λ generalized eigenvectors) is equal to the
number of times λ is a root to the characteristic polynomial. If ~v1, . . . ~vs are generalized eigenvectors
for distinct eigenvalues λ1, . . . λs, then {~v1, . . . ~vs} is linearly independent. Each matrix A is similar
to block diagonal matrix where each non-zero block Bj corresponds to the generalized eigenspace of a
distinct eigenvalue λj . 

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bs


We list all a sequence of 4 × 4 matrices that could be B in a 4-dimensional version of our theorem
above.

λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ



λ 1 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ



λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ



λ 1 0 0
0 λ 1 0
0 0 λ 0
0 0 0 λ



λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


Note that there are non-zero entries only on the main diagonal and on the diagonal just above the
main diagonal. This diagonal is sometimes called the super diagonal.

5. Bigger Example Consider the matrix A, eventually A has characteristic polynomial (λ− 5)5(λ+ 2).

A =


5 1 0 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 5 1 0
0 0 0 0 5 0
0 0 0 0 0 −2





The eigenvalue −2 has a one-dimension eigenspace spanned by v6 = [0, 0, 0, 0, 0, 1]T , the eigenvalue
5 has a two-dimensional space spanned by v1 = [1, 0, 0, 0, 0, 0]T and v4 = [0, 0, 0, 1, 0, 0]T . The
subspace ker(A − 5I)2 is spanned by four vectors v1, v4 and the order 2 generalized eigenvectors
v2 = [0, 1, 0, 0, 0, 0]T and v5 = [0, 0, 0, 0, 1, 0]T . While the subspace ker(A − 5I)3 is spanned by five
vectors v1, v2, v4, v5 and the order 3 generalize eignevector v3 = [0, 0, 1, 0, 0, 0]T . Any non-zero vector
of the form [x1, x2, x3, x4, x5, 0]T is a generalized eigenvector for the eigenvalue 5.

There are a couple of ways to work on these problems. One is to backtract from generalized eigenvector
of order k to generalize eigenvector of order k + 1 as needed. Sometimes, trial and error is the fastest
method.

6. Problems part 2 For each n× n matrix, find a basis of Rn consisting of generalized eigenvectors.

(a) A =

3 1 0
0 2 −1
0 0 3


(b) A =

3 1 1
0 3 1
0 0 3


(c) A =

3 0 1
0 3 1
0 0 3



(d) A =


1 2 0 1
0 1 0 1
0 0 2 2
0 0 0 1



(e) A =


1 2 1 1
0 2 3 1
0 0 2 2
0 0 0 1



(f) A =


−1 0 2 1
0 −1 2 1
0 0 −1 2
0 0 0 2


7. True or False Problems

(a) An eigenvector is a generalized eigenvector.

(b) If A2~v = 0 and ~v 6= 0 then ~v is a generalized eigenvector of order 2 for the eigenvalue 0 of A.

(c) Sometimes dim kerA2 > dim kerA.

(d) Sometimes dim kerA2 > 2 dim kerA.

(e) te−2t is a generalized eigenvector of order 2 for the eigenvalue −2 of the derivative operator D.

(f) If ~v is a generalized eigenvector of order k for the eigenvalue λ then λ is a root at least k times to
the characteristic polynomial.

(g) If λ is a root k times of the characteristic polynomial of the matrix A, then A has a generalized
eigenvalue of order k.

(h) If ~v is a generalize eigenvector of order k for λ and A then (A− λI)~v is a generalized eigenvector
of order k + 1.

(i) The matrix

0 1 0
0 0 0
0 0 1

 is diagonalizable.



8. Answers These answers are not unique.

(a) Characteristic polynomial p(λ) = (λ − 3)2 which has a one dimensional eigenspace spanned by

v1 = [1, 1]T . There are many choices possible for v2, how about v2 = [2, 0]T . then B =
[
3 1
0 3

]
and P =

[
1 2
1 0

]
. Checking AP =

[
3 7
3 1

]
and PB =

[
3 7
3 1

]
X

(b) Repeated eigenvalue λ = 6, v1 = [1, 1]T , v2 = [0, 2]T B =
[
6 1
0 6

]
and P =

[
1 0
1 2

]
(c) Repeated eigenvalue λ = 5, v1 = [1, 0]T , v2 = [0,−1]T B =

[
5 1
0 5

]
and P =

[
1 0
0 −1

]
(d) Repeated eigenvalue λ = −2, v1 = [1/2, 1/2]T , v2 = [1, 2]T B =

[
−2 1
0 −2

]
and P =

[
1/2 1
1/2 2

]
9. Answers part 2 The answers are not unique, but there is a logic to answers choosen, it is so the

super-diagonal entries of something would be one. Careful, these answers were machine generated and
not yet checked.

(a) λ = 2 order k = 1

−1
1
0

, λ = 3 order k = 1

1
0
0

 and order k = 2

−1
1
1


(b) λ = 3 order k = 1

1
0
0

, order k = 2

0
1
0

 and order k = 3

 0
−1
1


(c) λ = 3 order k = 1

1
1
0

, order k = 2

1
0
1

 and order k = 1

1
0
0



(d) λ = 2 order k = 1


0
0
1
0

, λ = 1 order k = 1


2
0
0
0

, order k = 2


0
1
0
0

 and order k = 3


0
−1/2
−2
1


10. True or False answers

(a) True, an eigenvector is a generalized eigenvector of order 1.

(b) False, it could be order 1.

(c) True.

(d) False, otherwise t > s.

(e) True.

(f) True.

(g) False, consider the identity matrix for example.

(h) False, it goes the wrong way (A− λI)~v has order k − 1.

(i) False.


