Harmonic Exercises

For maa4402
December 29, 2016

For each $u(x, y)$, first show $u(x, y)$ is harmonic and then find $v(x, y)$ so that $f(z)=u(x, y)+i v(x, y)$ is an entire function.

1. $u(x, y)=x^{5}-10 x^{3} y^{2}+5 x y^{4}$.

Answer First lets show that u is harmonic:

$$
\begin{gathered}
u_{x x}=\left(5 x^{4}-30 x^{2} y^{2}+5 y^{4}\right)_{x}=20 x^{3}-60 x y^{2} \\
u_{y y}=\left(-20 x^{3} y+20 x y^{3}\right)_{y}=-20 x^{3}+60 x y^{2}=-u_{x x}
\end{gathered}
$$

Cauchy-Riemann say $v_{x}=-u_{y}=20 x^{3} y-20 x y^{3}$ and $v_{y}=u_{x}=5 x^{4}-30 x^{2} y^{2}+5 y^{4}$. Just like in Calculus 3 this implies

$$
\begin{gathered}
v=5 x^{4} y-10 x^{2} y^{3}+\Theta(x) \\
v=5 x^{4} y-10 x^{2} y^{3}+y^{5}+\Phi(y)
\end{gathered}
$$

Combining we get

$$
v=5 x^{4} y-10 x^{2} y^{3}+y^{5}+C
$$

Eventually, if $C=0, f(z)=z^{5}$ since

$$
u+i v=x^{5}+5 x^{4} i y+10 x^{3}(i y)^{2}+10 x^{2}(i y)^{3}+(i y)^{5}=(x+i y)^{5}
$$

2. $u(x, y)=-y$
3. $u(x, y)=x y$
4. $u(x, y)=y^{2}-x^{2}$
5. $u(x, y)=3 x y^{2}-x^{3}$
6. $u(x, y)=\cos x e^{y}$
7. $u(x, y)=\cos x \sinh y$
8. Hints
9. $\Re(i z)=-y$
10. $\Re\left(-i z^{2} / 2\right)=x y$
11. $\Re\left(-z^{2}\right)=y^{2}-x^{2}$
12. $\Re\left(-z^{3}\right)=3 x y^{2}-x^{3}$
13. $\Re(\exp (-i z)=\cos x \exp y$
14. $\Re(-i \sin (z))=\cos x \sinh y$
