Open, Closed, Interior, Exterior, Boundary, Connected

For maa4402

January 1, 2017

These are a collection of definitions from point set topology. We give some examples based on the sets collected below.

- $D = \{z \in \mathbb{C} : |z| \le 1\}$, the closed unit disc.
- $B = \{z \in \mathbb{C} : |z| < 1\}$, the open unit disc.
- $S = \{z \in \mathbb{C} : |z| = 1\}$, the unit circle.
- $H = \{z \in \mathbb{C} : |z| > 1\}$, the complement of D.
- $R = \{z \in \mathbb{C} : \Im z = 0\}$, the real line.
- For any set A, the complement of A, written A^c or $\mathbb{C} \setminus A = \{z : z \notin A\}$

Definitions:

1. ε -Neighborhood of a point z_0 ,

$$D_{\varepsilon}(z_0) = \{z : |z - z_0| < \varepsilon\}$$

- 2. The point w is an *interior point* of the set A, if for some $\varepsilon > 0$, the ε -neighborhood of $w, D_{\varepsilon}(w) \subset A$. The *interior of* A, int A is the collection of interior points of A. The set A is open, if and only if, int A = A. Note B is open and B = int D. Both S and R have empty interiors. H is open and its own interior.
- 3. The point w is an exterior point of the set A, if for some $\varepsilon > 0$, the ε -neighborhood of $w, D_{\varepsilon}(w) \subset A^c$. The exterior of A, ext A is the collection of exterior points of A. The set A is closed, if and only if, ext $A = A^c$. Note D and S are both closed. The exterior of either D or B is H. The exterior of S is $B \cup H$.
- 4. The point w is an *boundary point* of the set A, if every ε neighborhood of w meets both A and A^c , (has a non-empty intersection),

$$D_{\varepsilon}(w) \cap A \neq \emptyset \neq D_{\varepsilon}(w) \cap A^{c}.$$

The boundary of A, ∂A is the collection of boundary points. The set A is closed, if and only if, it contains its boundary, and is open, if and only if $A \cap \partial A = \emptyset$. Note S is the boundary of all four of B, D, H and itself.

- 5. A set A is said to be *bounded* if it is contained in $B_r(0)$ for some $r < \infty$, otherwise the set is *unbounded*. The sets H and R are unbounded, while B, D and S are bounded.
- 6. An open set A is said to be *connected* if there is a polygonal line between any two points in A. A connected open set is called a *domain*. A domain together with part of its boundary is called a *region*. So B and H are domains and D is a region. Note that since S is not open, we haven't defined connected for S. The points of S are not connected with polygonal lines, but it is obviously "connected" in some sense which is called *pathwise connected*. The set $\mathbb{C} \setminus S = B \cup H$ is open but not connected.

7. A point w is said to be an *accumulation point* of the set A, if every ε -neighborhood $D_{\varepsilon}(w)$ contains a point of A different from w. That is

$$(D_{\varepsilon}(w) \setminus \{w\}) \cap A \neq \emptyset.$$

This is called a deleted ε -neighborhood of w, it is the set of points $\{z \in \mathbb{C} : 0 < |z - w| < \varepsilon\}$. The set $\{1/n : n = 1, 2, ...\}$ has only one accumulation point, namely 0.

8. The *closure* of the set A, (written cl A), is the smallest close set containing A which is $A \cup \partial A$. A set is closed, if and only if, A = cl A.

A	$\operatorname{cl} A$	$\operatorname{int} A$	$\operatorname{ext} A$	∂A
$\{z: z < 1\}$	$\{z: z \le 1\}$	$\{z: z < 1\}$	$\{z: z > 1\}$	$\{z: z = 1\}$
$\left \{ z : z \le 1 \} \right $	$\{z: z \le 1\}$	$\{z: z < 1\}$	$\{z: z > 1\}$	$\{z: z = 1\}$
$\left\{z: z =1\right\}$	$\{z: z = 1\}$	Ø	$\{z: z \neq 1\}$	$\{z: z = 1\}$
$\{z: z > 1\}$	$\{z: z \ge 1\}$	$\{z: z > 1\}$	$\{z: z < 1\}$	$\{z: z = 1\}$
$\{z:\Im z=0\}$	$\{z:\Im z=0\}$	Ø	$\{z:\Im z \neq 0\}$	$\{z:\Im z=0\}$
$\{z:\Im z > 0\}$	$\{z:\Im z \ge 0\}$	$\{z:\Im z > 0\}$	$\{z:\Im z<0\}$	$\{z:\Im z=0\}$
$\{z:\Im z \ge 0\}$	$\{z:\Im z \ge 0\}$	$\{z:\Im z > 0\}$	$\{z:\Im z<0\}$	$\{z:\Im z=0\}$