How to show $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$

For maa4402
April 13, 2017

Our goal is to compute the improper integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

We start by doing what seems (at first) to be an unrelated integral. Let C, (see Figure 1) be the closed path formed in four parts: The x-axis from $-R$ to $-r$; the curve $C_{r}: z=r \exp (i \theta), 0 \leq \theta \leq \pi$ going backwards; the x-axis from r to R; and the curve $C_{R}: z=R \exp (i \theta), 0 \leq \theta \leq \pi$. Let

$$
f(z)=\frac{e^{i z}}{z}
$$

and then

$$
\int_{C} f(z) d z=\int_{-R}^{-r} f(x) d x-\int_{C_{r}} f(z) d z+\int_{r}^{R} f(x) d x+\int_{C_{R}} f(z) d z .
$$

And since $f(z)$ is analytic everwhere but $z=0$, the curve C has no singularities of f inside and hence

$$
\int_{C} f(z) d z=0
$$

Think of $r \rightarrow 0$ and $R \rightarrow \infty$. The curve C_{r} goes half way around the singularity at $z=0$. We tackle the C_{r} curve first, using the following Lemma.

Lemma. If $g(z)$ is analytic in $0<|z|<R$ with a simple pole at $z=0$, then

$$
\lim _{r \rightarrow 0} \int_{C_{r}} g(z) d z=\pi i \operatorname{Res}_{z=0} g(z)
$$

Figure 1: The four pieces of the closed contour C.

Proof. If $f(z)$ is analytic in $|z|<R$ with anti-derivative $F(z)$, then

$$
\int_{C_{r}} f(z) d z=F(-r)-F(r)
$$

Since $F(z)$ is continous at $z=0$ as $r \rightarrow 0, F(-r)-F(r) \rightarrow F(0)-F(0)=0$ and hence

$$
\lim _{r \rightarrow 0} \int_{C_{r}} f(z) d z=0
$$

Computing for a pole

$$
\int_{C_{r}} \frac{1}{z} d z=\left.\log z\right|_{r} ^{-r}=\log (-r)-\log r=\ln r+\pi i-\ln r=\pi i
$$

We can write $g(z)=\frac{B}{z}+f(z)$ and so

$$
\lim _{r \rightarrow 0} \int_{C_{r}} g(z) d z=B \pi i+0
$$

Note there are problem if $g(z)$ has a higher order pole.

$$
\int_{C_{r}} \frac{1}{z^{2}} d z=\left.\frac{-1}{z}\right|_{r} ^{-r}=\frac{1}{r}+\frac{1}{r}=\frac{2}{r}
$$

Which goes to ∞ as $r \rightarrow 0$.
The residue of $f(z)$ at $z=0$ is $\exp (i 0)=1$ hence

$$
\lim _{r \rightarrow 0} \int_{C_{r}} f(z) d z=\pi i
$$

Next we tackle C_{R}, we need to know some lemmas.

Lemma.

$$
\text { For } 0 \leq \theta \leq \frac{\pi}{2}, \frac{2}{\pi} \theta \leq \sin \theta
$$

Proof.

Note for $0 \leq \theta \leq \pi:$

$$
\begin{aligned}
\exp \left(i R e^{i \theta}\right) & =\exp (i R(\cos \theta+i \sin \theta)) \\
& =\exp (i R \cos \theta) \exp (-R \sin \theta) \\
\left|\exp \left(i R e^{i \theta}\right)\right| & =|\exp (i R \cos \theta)| \exp (-R \sin \theta) \\
& =\exp (-R \sin \theta) \\
& \leq \exp \left(-R \frac{2}{\pi} \theta\right) \quad\left(\text { when } \theta \leq \frac{\pi}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left|\int_{C_{R}} f(z) d z\right| & \leq \int_{C_{R}} \frac{|\exp (i z)|}{|z|}|d z| \\
& \leq \int_{0}^{\pi} \frac{\left|\exp i R e^{i \theta}\right|}{R}\left|R i e^{i \theta}\right| d \theta \\
& \leq \int_{0}^{\pi}\left|\exp i R e^{i \theta}\right| d \theta \\
& \leq 2 \int_{0}^{\pi / 2} \exp \left(-R \frac{2}{\pi} \theta\right) d \theta \\
& =\left.2 \frac{\exp \left(-R \frac{2}{\pi} \theta\right)}{-R \frac{2}{\pi}}\right|_{0} ^{\pi / 2} \\
& =\frac{\pi}{R}(-\exp (-R)+1) \\
& \leq \frac{\pi}{R} \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Therefore

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

Finally on the x-axis, $z=x+i 0$ and

$$
f(z)=f(x)=\frac{e^{i x}}{x}=\frac{\cos x}{x}+i \frac{\sin x}{x} .
$$

Because $\cos x / x$ is an odd function:

$$
\int_{-R}^{-r} \frac{\cos x}{x} d x+\int_{r}^{R} \frac{\cos x}{x} d x=0
$$

Because $\sin x / x$ is an even function:

$$
\begin{aligned}
& \int_{-R}^{-r} \frac{\sin x}{x} d x+\int_{r}^{R} \frac{\sin x}{x} d x=2 \int_{r}^{R} \frac{\sin x}{x} d x \\
& \int_{-R}^{-r} f(x) d x+\int_{r}^{R} f(x) d x=2 i \int_{r}^{R} \frac{\sin x}{x} d x
\end{aligned}
$$

Adding all the pieces together, as $R \rightarrow \infty$:

$$
\begin{gathered}
0=2 i \int_{0}^{\infty} \frac{\sin x}{x} d x-\pi i \\
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
\end{gathered}
$$

Summary of the steps:

1. Is our function even or odd or neither? Since both $\sin x$ and x are odd functions, their quotient is even and we can use

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} d x=2 \int_{0}^{\infty} \frac{\sin x}{x} d x
$$

2. Use principal values. The improper integral $\int_{-1}^{1} 1 / x d x$ diverges in Calculus 2, since

$$
\lim _{\delta \rightarrow 0^{+}} \int_{-1}^{-\delta} \frac{1}{x} d x+\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} \frac{1}{x} d x
$$

fails to exist. The principal value defined by

$$
\lim _{r \rightarrow 0^{+}}\left(\int_{-1}^{-r} \frac{1}{x} d x \int_{r}^{1} \frac{1}{x} d x\right)=0
$$

does exist. We didn't explicitly use this step for our $f(z)$. It was hidden in the computation of $\int_{-R}^{-r} \cos x / x d x+\int_{r}^{R} \cos x / x d x=0$. Neither improper integral exists in the Calculus 2 sense.
3. Find a nice function $f(z)$ that may have isolated singularities but is otherwise analytic (at least in the upper half plane). So that

$$
\frac{\sin x}{x}=\Re(f(x+i 0))
$$

For $\sin x / x$ we can use

$$
\begin{aligned}
f(z) & =\frac{-i \exp (i z)}{z} \\
f(x+i y) & =\frac{-i \exp (-y+i x)}{x+i y} \\
& =\frac{-i \exp (-y)(\cos (x)+i \sin (x))}{x+i y} \\
& =\frac{\exp (-y)(\sin (x)-i \cos (x))}{x+i y} \\
f(x+i 0) & =\frac{\exp (0)(\sin (x)-i \cos (x))}{x+i 0} \\
f(x+i 0) & =\frac{\sin (x)}{x}-i \frac{\cos (x)}{x} \\
\Re f(x+i 0) & =\frac{\sin (x)}{x}
\end{aligned}
$$

4. Let C_{R} be $\phi(\theta)=R e^{i \theta}$ for $0 \leq \theta \leq \pi$ the top half of the circle of radius R centered at the origin. Often it is possible to show

$$
\lim _{R \rightarrow 0} \int_{C_{R}} f(z) d x \rightarrow 0
$$

5. Compute the integral using Cauchy Residue theorem.
6. Estimate the integral over C_{R} and show it goes to zero as $R \rightarrow \infty$.
7. Put the pieces together. Usually

$$
\int_{-R}^{R} \Re f(x+i 0) d x=\Re \int_{-R}^{R} f(z) d z+\int_{C_{R}} f(z) d z=\Re\left(2 \pi i \sum \text { Residues }\right)
$$

