- 1. Determine if the statement is True or False and give a (short) supporting reason.
 - (a) The singularities of $\csc z$ are all simple poles.
 - (b) $\sin z/z$ has a removable singularity at z = 0 and is thus really an entire function.
 - (c) If z = 0 is a pole of order 5 for f(z), then f(1/z) is a polynomial of degree 5.
 - (d) For a > 0, $\int_{-\infty}^{\infty} (a^2 + \theta^2)^{-1} d\theta = \pi/a$
 - (e) If g(z) is entire, then the residue of f(z)g(z) at $z = z_0$ is the residue of f(z) at $z = z_0$ times $g(z_0)$.
 - (f) $(\sum a_n z^n)(\sum b_n z^n) = \sum a_n b_n z^{2n}$
 - (g) In the region where both sides are defined, $1/(1 + z + z^2 + z^3 + \cdots) = 1 z$
 - (h) If f(z) is bounded near its singularity at $z = z_0$ then $z = z_0$ is a pole for f(z).
 - (i) The residue of Log z at z = 0 is 1.
 - (j) The residue of $\exp(iz)/z$ at z = 0 is 1/2