Fun Exercises II

For maa4402

December 29, 2016

Use the theorem on uniqueness of analytic functions to provide fast proofs of the following identities. Always $z=x+i y$ and same for subscripted variables, so $z_{2}=x_{2}+i y_{2}$.

1. $e^{z}=e^{x} \cos y+i e^{x} \sin y$

Answer The LHS is entire, its derivative is e^{z}. The RHS is entire by Cauchy Riemann

$$
\begin{gathered}
u_{x}=\left(e^{x} \cos y\right)_{x}=e^{x} \cos y=\left(e^{x} \sin y\right)_{y}=v_{y} \\
u_{y}=\left(e^{x} \cos y\right)_{y}=-e^{x} \sin y=-\left(e^{x} \sin y\right)_{x}=-v_{x}
\end{gathered}
$$

And LHS $=$ RHS when z is real, since $z=x$ and $y=0$ imply $\cos 0=1$ and $\sin 0=0$. So by the uniqueness theorem LHS $=$ RHS for all z.
2. $\cosh z=\cosh x \cos y+i \sinh x \sin y$
3. $\cos z=\cos x \cosh y-i \sin x \sinh y$
4. Explain why this techniques can't prove $\cos z=\cos x \cosh y+i \sin x \sinh y$
5. $\cos ^{2} z+\sin ^{2} z=1$
6. $\cos 2 z=\cos ^{2} z-\sin ^{2} z$
7. $\sin (z+2 \pi)=\sin z$
8. $\sin (z+\pi)=-\sin z$
9. $\sin (z+\pi / 2)=\cos z$
10. $\cos ^{2} z=(1+\cos 2 z) / 2$
11. $\cosh ^{2} z-\sinh ^{2} z=1$
12. $\sec ^{2} z=\tan ^{2} z+1$ where the LHS or RHS is defined.
13. $\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}$

Answer First suppose z_{2} a fixed real number. Then as a function of z_{1}, the LHS is entire with derivative $\cos \left(z_{1}+z_{2}\right)$ and the RHS is entire with derivative $\cos z_{1} \cos z_{2}-\sin z_{1} \sin z_{2}$. They agree when z_{1} is real, so the two sides are equal if z_{2} is real. Now suppose z_{1} is a fixed complex number. Then as a function of z_{2}, the LHS is entire with derivative $\cos \left(z_{1}+z_{2}\right)$ and the RHS is entire with derivative $-\sin z_{1} \sin z_{2}+\cos z_{1} \cos z_{2}$. And the first part of the proof, showed LHS $=$ RHS if z_{2} was real. So they are equal for all z_{2}. Since z_{1} was arbitrary, it is true for all complex z_{1} and z_{2}.
14. $\cos \left(z_{1}+z_{2}\right)=\cos z_{1} \cos z_{2}-\sin z_{1} \sin z_{2}$
15. $\cos z_{1} \cos z_{2}=\left(\cos \left(z_{1}-z_{2}\right)+\cos \left(z_{1}+z_{2}\right)\right) / 2$
16. $\tan \left(z_{1}+z_{2}\right)=\left(\tan z_{1}+\tan z_{2}\right) /\left(1-\tan z_{1} \tan z_{2}\right)$ where the LHS or RHS is defined.

