
Rough Idea for Alternate 4.2.1

“Big Oh” Notation

This is an intuitive approach using limits. The use of limits here can also be done
intuitively. Previous knowledge of limits is not assumed.

Consider the table below, f(n) is the function,

n n
1
3 n

1
2 n log n n2 n3 n8 2n 4n n!

1 1 1 0 1 1 1 2 4 1
2 1.3 1.4 1.4 4 8 256 4 16 2
3 1.4 1.7 3.3 9 27 6561 8 64 6

10 2.2 3.2 23 100 103 108 1024 106 3.6 × 106

20 2.7 4.5 60 400 8× 103 2.6× 1010 106 1012 2.4 × 1018

100 4.6 10 460 104 106 1016 1.3× 1030 1.6 × 1060 9.3× 10157

1000 10 31.6 6900 106 109 1024 10301 1.2× 10602 4 × 102567

Most entries are approximate

The functions in the table are in increasing order (in terms of big oh) going from left to
right. (Although the function n fits between n

1
2 and n log n.) That is O(n

1
3) < O(n

1
2) <

O(n) < O(n log n) < O(n2) < O(n3) < O(n8) < O(2n) < O(4n) < O(n!). Note that
this does not say n8 < 2n for all values of n. (Certainly it isn’t true for n = 2.) Big oh
“measures” what happens for large values of n. (already by n = 100, it takes twice as
many digits to write out 2n as it does to write out n8.)

Also big oh is a “rough measure”, that is, O(n8) = O(13n8). Multiplying a function
by a positive constant does not change its big oh. After all, multiplying the entries of the
n8 column by 13 isn’t going to help it catch up with 2n.

There are two useful rules in the table. The first is the approximation 210 = 1024 ∼
103. Thus 2100 = (210)10 = 1030 and 224 = (210)2 · 24 ∼ 16 × 106. The second rule is
hidden better. It is O(n log n) = O(log(n!)). (The log used in the table is the natural log.)
More on this second rule later.

Well, it’s time to give a way of determining when O(f) = O(g) or O(f) < O(g). The
theorem below doesn’t always do this for general functions f(n) and g(n). But it will work
for the functions found in this book.

1

Theorem. Suppose

lim
n→∞

f(n) = lim
n→∞

g(n) =∞ and lim
n→∞

f(n)
g(n)

= L,

then if

O < L <∞ we have O(f) = O(g)
or if L = 0 we have O(f) < O(g)

or if L =∞ we have O(f) > O(g).

To say lim
n→∞

f(n) = ∞, just means intuitively if n is “infinitely large” then f(n) is

“infinitely large” or that f(n) grows without bound as n gets big. To say lim
n→∞

f(n)
g(n) = L

means f(n)
g(n) is close to L as n gets big. Let’s do some examples to get the idea.

Examples

1. O(n) = O(2n)

since lim
n→∞

n = lim
n→∞

2n =∞ and lim
n→∞

n

2n
= lim
n→∞

1
2

=
1
2

.

2. O(n2) = O(7n2 + 100n+ 13)

7n2 + 100n+ 13
n2

= 7 +
100
n

+
13
n2
→ 7

note that as n→∞, both 100
n and 13

n2 get small.

3. O(n8 + 5n3) = O
(

1
2
n8 + 6

)
n8 + 5n3

1
2n

8 + 6

(1
n8

1
n8

)
=

1 + 5
n5

1
2 + 6

n8

→ 1
1
2

= 2

“The trick” is divide both top and bottom by the highest power of n.

4. O(n) < O(n log n) < O(n2)

n

n log n
=

1
log n

→ 0

n log n
n2

=
log n
n
→ 0

2

The fact that logn
n → 0 is usually proved in calculus classes. Intuitively speaking,

we see that since n = 10logn, it takes log n digits to write n and so n is much
bigger than log n.

In fact, O(log n) < O(nk), for any k > 0. Thus O(n log n) < O(n1+k), for any
k > 0 and in particular when k = 1.

5. O(2n) < O(4n)

lim
n→∞

2n

4n
= lim
n→∞

(
2
4

)n
= 0 since

2
4

=
1
2
< 1.

6. If A > 1, then O(n) < O(An).

Taking the limit of n
An is easy if one knows enough calculus. However we can still

do it with more work.

Lemma 1. If B > 1 and N is large enough so that B > 1 + 1
N and let K = N

8N
,

then for n ≥ N , n ≤ KBn.

Proof. By induction. When n = N , K = N
BN

or N = KBN . Assume n ≤ KBn is
true. Multiply by B getting Bn ≤ KBn+1. Now B > 1 + 1

N so Bn > n+ n
N . But

n
N ≥ 1, so Bn ≥ n+ 1 and n+ 1 ≤ KBn+1.ut

Now
n

An
=

n

Bn
Bn

An
for 1 < B < A. so

n

An
≤ K

(
B

A

)n
for n ≥ N and thus

n

An
→ 0.

7. If A > 1, then O(n3) < O(An) let B = A
1
3 > 1 thus

n

Bn
→ 0 by 6 so that

(n

Bn

)3

=

n3

B3n
=
n3

An
→ 0.

8. O(10n) < O(n!)

Let N = 20 and note if n > N
10n

n!
≤ 10N

N !

(
1
2

)n−N
→ 0. (Prove it by induction.)

3

Problems

1. Show O(n+ 1) = O(10n+ 7) = O(n+ log n) = O(n)

2. Show O(n3 + n2 + n+ 1) = O(n3 − 13) = O(n3)

3. Show O(n
1
2) < O(n)

4. Show O(
√
n2 + 1) = O(n)

5. Show O(n100) < O(n101 +
√
n)

6. Show O(2n) < O(3n)

7. Show O(n2n) < O(2n)

8. Show O(n2n) < O(3n)

9. Show O(n100) < O(2n)

10. Show O(100n) < O(n!)

11. How are the big oh’s of the following related?
√
n, n log n, n

√
n, 2n, logn, n2n,

2n log n, n2, n
1
5

12. If there are two programs P1 and P2 that do the same thing and P1 runs in O(f) and
P2 runs in O(g) and O(f) < O(g), does this mean P1 will always be faster than P2?
Why or why not?

13. Approximate 2100, 218, 216, 232 using 210 ∼ 103.

14. The following formula is in advanced calculus textbooks

1 ≤ n!√
2nπ(ne)n

≤ 1 +
1

12n− 1
.

Use it to show O
((n

e

)n)
< O(n!) < O(nn) and that O(n log n) = O(log n!). (Note

O ∗ logb n) = O(loga n) if a, b > 1.)

4

