HW1

1.14: If G is self-complementary, then q, the number of edges in G is the same as the number of edges in \bar{G} which is $\binom{p}{2}-q$. Some arithmetic yields $p(p-1) / 2-q=q$ or $p(p-1)=4 q$. Since the right hand side of this last equation is divisible by 4 so is the left hand side. Thus, either $4|p, 4|(p-1)$ or both $2 \mid p$ and $2 \mid(p-1)$. The last case is impossible, since if p is even, then $p-1$ is odd and not divisible by 2 . If $4 \mid p$, then $p \equiv 0 \bmod$ 4 and if $4 \mid(p-1)$, then $p \equiv 1 \bmod 4$.
1.15: Since G itself is k-regular when $k=0$, we can assume $k>0$. Consider $J=K_{k+1}-e$, where e is any edge of K_{k+1}. J has two vertices of degree $k-1$ and all the other vertices have degree k. Suppose $n=\sum_{v \in V}(k-\operatorname{deg} v)$ (which is the number of edges with one end in $V(G)$ we need to add to make all these vertices have degree k) is even. Then H is the union of G and $n / 2$ copies of J together with n edges with exactly one end in G. Each edge is used to increase the degree of a vertex in G with degree less than k and the other end makes one of the degree $k-1$ vertices have degree k. G is the induced subgraph of H given by $\langle V(G)\rangle$ since we have added no new edges with both ends in G.

If k and p are both odd, then $n=k p-2 q$ is odd. So adding $(n-1) / 2$ copies of J as above, leaves one vertex in G (and hence H) with degree $k-1$ and all the others have degree k. Let L be two copies of H, and an edge adjoining the two vertices of degree $k-1$. L is the required supergraph.
1.15 Method 2: Consider the graph operation k-mirror. If G is a graph with $\Delta(G)=k$, then the k-mirror of G is two copies of G and corresponding vertices of degree less than k are made adjacent. If K is the k-mirror of G, then $\delta(K)=\delta(G)+1$ and $\Delta(K)=\Delta(G)$. Furthermore G is an induced subgraph of K because no new edges have both ends in G. By doing the k-mirror, $\Delta(G)-\delta(G)$ times iteratively, the resulting graph has $\Delta=\delta=k$, and it is k-regular
1.16: Suppose G is a k-regular bipartite graph with partite sets V_{1} and V_{2}. Since each edge has one end in V_{1} and each vertex of V_{1} has degree k , we have $q=k \cdot\left|V_{1}\right|$. Similarly $q=k\left|V_{2}\right|$. Dividing both sides of $k\left|V_{1}\right|=k\left|V_{2}\right|$ by k gives the result.

The error, of course, is that k could be zero. If $k \neq 0$, then the division is valid. So if had the assumption that G is non-empty, the result is valid. The result is false in general. For a counter-example consider \bar{K}_{3} which is bipartite in any partition of $V\left(\bar{K}_{3}\right)$, but never can $\left|V_{1}\right|=\left|V_{2}\right|$, since $|V|$ is odd.

