## HW2

1.26: Hints given in class.
1.30: Almost too easy with loops. The Handshaking Lemma saids $\sum_{i=1}^{p} d_{i}$ must be even when $d_{1}, d_{2}, \ldots d_{p}$ is a degree sequence. Conversely, let $d_{1}, d_{2}, \ldots d_{p}$ be given with $\sum_{i=1}^{p} d_{i}$ even. Construct $G$ as follows. Let $v_{1}, v_{2}, \ldots v_{p}$ be the vertices of $G$. If $d_{i}$ is even add $d_{i} / 2$ loops at $v_{i}$. If $d_{i}$ is odd add $\left(d_{i}-1\right) / 2$ loops at $v_{i}$. Since the number of odd $d_{i}^{\prime} s$ is even, pair up the odd $d_{i}^{\prime} s$ and add an edge from $v_{i}$ to $v_{j}$ if $d_{i}$ was paired to $d_{j} . G$ has the required degree sequence.
1.30 By Induction. (On $n=\sum_{i=1}^{p} d_{i}$ ) If $n=0$ use the empty graph. Assume true for $n$, that is if $n \sum_{i=1}^{p} d_{i}$ then there is a multigraph $G$ with the degree sequence $d_{1}, d_{2}, \ldots d_{p}$. Let $d_{1} \geq d_{2} \geq \cdots \geq d_{p}$ be a sequence with $\sum_{i=1}^{p} d_{i}=n+2$. If $d_{1}=1$, then $d_{2}=1$, and the sequence $d_{1}-1, d_{2}-1, d_{3}, \ldots d_{p}$ is the degree sequence of a graph $G$ with vertices $v_{1}, v_{2}, \ldots v_{p}$. Adding an edge $v_{1} v_{2}$ to $G$ yields a multigraph with the required degree sequnce. Otherwise $d_{1} \geq 2$, apply the induction hypothesis to $d_{1}-2, d_{2}, \cdots, d_{p}$ and then at a loop at $v_{1}$.
1.31: Let $G$ be a $(p, q)$-graph with vertices $v_{i}$ of degree $d_{i}$. The line graph $L(G)$ has $q$ vertices, one for each edge $G$. The degree of the vertex $v$ in $G$ is the number of edges with one end at $v$. There is an edge in $L(G)$ for every pair of edges in $G$ which have one end at $v$. Thus the vertex $v$ with degree $d$ results in $(d-1) d / 2$ edges in $L(G)$. [Note this formula also works when $d=0,1$.] So the number of edges in $L(G)=\sum_{v \in V(G)} \operatorname{deg}(v)(\operatorname{deg}(v)-1) / 2$.

