HW7

2.14: Since G is n-connected it must have at least $n+1$ vertices. Otherwise removing fewer then n vertices would trivialize G. Suppose H is $G+x$ and the n new edges $x v_{i}$ for $i=1 \ldots n$. H has at least $n+2$ vertices. Suppose removing k vertices of H disconnects H. If one of the components is just the vertex x, then we must have removed each of the n edges $x v_{i}$ so $n \leq k$. Otherwise, at least two of the components must contain vertices of G and hence the removal of these k vertices (or $k-1$ if x was one of them) must also disconnect G so $n \leq k$. Therefore H is n-connected. (Actually $\kappa(H)=n$ even when $\kappa(G)>n$.)
2.15: Do the construction above. Since H is n-connected there are n-internally disjoint $v x$-paths and each of these must use a different v_{i} by Menger's Theorem. (Since x and v are non-adjacent and it takes the removal of at least n vertices to separate x and v in H.) Ignoring the last edge in each path produces internally disjoint $v v_{i}$ paths in G.
2.16: If G has only even vertices and the edge $e=u v$ is a bridge, then each of the two components of $G-e$ will have one odd vertex (both u and v are now the only odd vertices) which is impossible by the handshaking lemma.

