HW9

5.13: To show $G \times H$ is Hamiltonian when both G and H are Hamiltonian it suffices to show $C_{n} \times C_{m}$ is Hamiltonian. This is best proved by a picture (the figure below.) Figure A is when m (the y or second coordinate) is even and Figure B is for when m is odd.

5.15: To show Q_{n} is Hamiltonian it suffices to show $K_{2} \times C_{n}$ is Hamiltonian. (This yields an inductive prove since Q_{2} is C_{4} and $Q_{n+1}=K_{2} \times Q_{n}$.) And his is really just Figure A (above) again.
5.44: The $(6,3)$-cage is drawn below. To show it is unique, let G be a $(6,3)$-cage and pick any vertex and call it 1 . Being 3-regular gives vertices 2,3 and 4 . Being 3 -regular gives vertices $5,6,7,8,9$, and 10 and the girth of 6 requires all of these are distinct. The 3 -regularity of 5 and 6 , yield the vertices $11,12,13$, and 14 the girth requirement at 2 requires that these are all distinct. Since the graph below is a (6,3)-cage, any such graph must have 14 vertices. Thus to complete the degrees of 7 and 8 (and 9 and 10) require these to be connected to $11,12,13$, and 14 . Vertex 7 can't be connected to both 11 and 12 (or both 13 and 14) or 7-11-5-12-7 would have girth 5 . Renaming we may assume 7 is connected to 11 and 13 and 8 is connected to 12 and 14. Two similar agreements show 9 is not connected to both 11 and 12 and 9 is not connect to both 11 and 13. So we can assume 9 is connected to 12 and 13 and 10 is connected to 11 and 14 (or we can swap them.) So it must be the graph below.

