6.5: A maximal planar graph has $q=3 p-6$ or $2 q=6 p-12$. Now $p=\sum p_{i}$ and $2 q=\sum i p_{i}$. We have

$$
3 p_{3}+4 p_{4}+5 p_{5}+6 p_{6}+7 p_{7}+8 p_{8}+\cdots+n p_{n}=6 p_{3}+6 p_{4}+6 p_{5}+6 p_{6}+6 p_{7}+6 p_{8}+\cdots+6 p_{n}-12
$$

since a maximal planar graph has no vertices of degree less than 3 , so by canceling terms we get

$$
p_{7}+2 p_{8}+\cdots(n-6) p_{n}+12=3 p_{3}+2 p_{4}+p_{5}
$$

6.13: We need to show T^{*} is a tree. Let r, q and p be the numbers for G, Euler says $p-q-r=2$. So T has $p-1$ edges which leaves $q-(p-1)=r+(-r+q-p)+1=r-2+1=r-1$ edges for T^{*}. Since T^{*} has r vertices, this is the correct number of edges for a spanning tree of G^{*}. Since T has only the unbounded region, each vertex of T^{*} (region of G) is eventually connected to the unbounded region (vertex) in G^{*}. Thus T^{*} is connected and hence a spanning tree. [Note: It is also easy to show T^{*} is acyclic and so you can turn the above on its head and use this to prove Euler's formula.]
6.14: For a planar graph $q \leq 3 p-6$. If both G and \bar{G} are planar we have $\binom{p}{2} \leq 2(3 p-6)$. So $p(p-1) \leq 4(3 p-6)$ or $f(p)=p^{2}-13 p+24 \leq 0$. This $f(p)$ is an upward pointing parabola which is increasing for $p \geq 13 / 2$. The last time $f(p)$ is negative is at $p=10, f(10)=-6$ and $f(11)=15$ so if $p \geq 11$ one of G or \bar{G} is non-planar.

