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Construction of ω1

Let X be an uncountable set and let ≤ be a well ordering on X. Well ordering means that each non-empty
subset A ⊆ X has a least element a ∈ A, that is b ∈ A implies a ≤ b. (For the moment we will accept the
existence of such an ordering.) For each a ∈ X, let

seg(a) = {x ∈ X|x < a}

be the initial segment, the set of all points of X strictly that are strictly less than a in the well ordering (see
§7.7 of the text).

Let Y = {y ∈ X| seg(y) is uncountable} and let assume Y is non-empty so that there is a least element
y0 ∈ Y . Then ω1 = seg(y0) is a well ordered uncountable set, so that

∀α ∈ ω1, segα is countable

(If Y is empty, the we can take the whole space X as ω1.)
(The space ω1 should not be confused with ω. Indeed ω = {0, 1, 2, . . . } = N = ℵ0 is countable, while

ω1 = ℵ1 is uncountable. Another way of noticing the difference is the say ω is the (infinite countable)
collection of finite ordinals and ω1 is the (uncountable) collection of countable ordinals )

The fundemental property of ω1

For every sequence {αn} ⊆ ω1 there is a β ∈ ω1 so that

∪n seg(αn) = seg(β)

That is no sequence can reach the end of ω1. The proof is simple, the union is countable because it is a
countable union of countable sets. The must be points in ω1 outside the union, so there must be a least
element β. There are some routine things to check, but eventually the result is clear.

Exercise: complete the proof of ∪n seg(αn) = seg(β).

The interlacing lemma

For sequences {αn} and {βn} with αn ≤ βn ≤ αn+1 for all n, let α∞ and β∞ be defined by

∪n seg(αn) = seg(α∞) and ∪n seg(βn) = seg(β∞)

then α∞ = β∞ and both sequences converge to α∞ in the order interval topology.
The basic open sets for the order interval topology are sets of one of the forms:

1. (−∞, α) = [0, α) = {γ ∈ ω1|γ < α}

2. (α,∞) = {γ ∈ ω1|α < γ}

3. (α, β) = {γ ∈ ω1|α < γ < β}
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The void set ∅ is open, and a set U ⊆ ω1 is open if each u ∈ U there is a basic open set B with u ∈ B ⊆ U .
A set is closed if its complement is open.

To see that limαn = α∞, let B = (γ, δ) a basic open set with α∞ ∈ B. Thus γ < α∞ < δ and γ is not
an upper bound to {αn}, so eventually for large n, γ < αn ≤ α∞ and αn ∈ B.

(Although it is not needed for the proof, each α ∈ ω1 is either a sucessor ordinal if seg(α) has maximum
β; in which case α = β+ = β + 1; or its a limit ordinal if seg(α) has no maximum. If α∞ = β+ then the
sequence {αn} is eventually constant and equal to α∞.)

Disjoint closed sets

If A and B are disjoint closed subsets of ω1, then at least one of them is countable. If both A and B are
uncountable, then for each αn ∈ A there is a βn ∈ B with αn < βn and a αn+1 ∈ A with βn < αn+1. The
interlacing lemma says α∞ = β∞. Since A is closed α∞ = limαn ∈ A and since B is closed β∞ = limβn ∈ B.
Thus A ∩B 6= ∅, contardicting the fact A and B are disjoint.

The continuous real-valued functions on ω1

The result is that every real-values continouous function f : ω1 → R is eventually constant. That is there is
some β ∈ ω1 and c ∈ R so that

β ≤ α⇒ f(α) = c

Composing f with 1/2+arctan(x)/π, gives a continuous function from ω1 to (0, 1) ⊆ R, so we can assume the
range of f is contained in [0, 1]. (That is the composition is eventually constant exactly when f is eventually
constant.)

For each m, And 0 < i < 2m − 1, let Ami = [i/2m, (i + 1)/2m], each of these sets are closed and if
i 6= j, j− 1orj+ 1 then Ami ∩Amj = ∅. Continuity implies Bmi = f−1[Ami ] are closed set whose union is all of
ω1. Thus at least one of the Bmi must be uncountable, and by the disjoint closed set property at most two
can be uncountable (Either Bmi−1 or Bmi+1 could also be uncountable but not both). Let Cm be the union
of the uncountable Bmi and let αn be such that β ≥ αn implies f(β) ∈ Cm, note the diameter of Cm is at
most 2m−1. Obviously Cm ⊇ Cm+1 and we can take αn+1 > αn. Since the Cm are closed with diameters
decreasing to zero, there is a unique c ∈ ∩Cm and for α ≥ β = limαn, f(α) = c.

More to come: ε0

The countable ordinal ε0 is the limit of the ordinals

ω, ωω, ωω
ω

, ωω
ωω

, . . .

where ωlimαn = limωαn and ωα+1 = ωαω which is a countable union of ωα’s one after the other. This
ordinal has the property that

ωε0 = ε0


