Truth with respect to an ultrafilter

Steven Bellenot

May 2, 2008

A free ultrafilter \mathscr{U}

Let I be an infinite index set, in the examples $I = \mathbb{N}$ but often I is a huge set. Let \mathscr{U} be a free ultrafilter on I, this means the following conditions are true

- 1. $\emptyset \notin \mathscr{U}$
- 2. $A \in \mathscr{U}$ and $A \subseteq B \Rightarrow B \in \mathscr{U}$
- 3. $A, B \in \mathscr{U} \Rightarrow A \cap B \in \mathscr{U}$

This is related to (FIP): $A, B \in \mathscr{U} \Rightarrow A \cap B \neq \emptyset$

- 4. (free) $\cap \mathscr{U} = \emptyset$
- 5. (ultra) $A \subseteq I$, then either $A \in \mathscr{U}$ or $I \setminus A \in \mathscr{U}$

Define an equivalence relation on $(I \to \mathbb{N})$ by

$$f \equiv g \iff \{x \in I | f(x) = g(x)\} \in \mathscr{U}$$

the relations is obviously symmetric, it is reflexive since $I \in \mathcal{U}$ and transitive by the FIP. Note that on the collection of equivalence classes the definitions below are well defined

$$\begin{split} f < g & \Longleftrightarrow \ \{x \in I | f(x) < g(x)\} \in \mathscr{U} \\ f \leq g & \Longleftrightarrow \ \{x \in I | f(x) \leq g(x)\} \in \mathscr{U} \\ f \equiv g \Rightarrow f + 1 \equiv g + 1 \end{split}$$

The ultra property gives that this \leq ordering is a linear ordering as one of the sets $\{x|f(x) < g(x)\}, \{x|f(x) = g(x)\}$, or $\{x|f(x) > g(x)\}$ must belong to the ultrafilter. We will the space $(I \to \mathbb{N}) / \equiv$ as \mathbb{N}

Infinitely large elements

Let $I = \mathbb{N}$. We can think of $\mathbb{N} \subseteq {}^* \ltimes$ by identifying $n \in \mathbb{N}$ with the function that is constantly n. Consider f(i) = i, this is and infinitely large element in the sense n < f for all $n \in \mathbb{N}$. Indeed the set $\{x | f(x) > n\} = \{n + 1, n + 2, ...\} \in \mathcal{U}$ since the ultrafilter is free. In particular, ${}^*\mathbb{N}$ is strictly bigger than \mathbb{N}

The successor function

Peano axioms for \mathbb{N} require as successor function S, on \mathbb{N} we define S(f) to be g = f + 1. That is g(i) = f(i) + 1 for all $i \in I$. Lets check Peano's axioms for \mathbb{N}

- 1. * \mathbb{N} is a set which contains the element $0, 0 \in \mathbb{N}$.
- 2. S is a function on $*\mathbb{N}, S : *\mathbb{N} \to *\mathbb{N}$

- 3. S is an injection, $Sf = Sg \Rightarrow f = g$. In *N this means $\{i|f(i) + 1 = g(i) + 1\} = \{i|f(i) = g(i)\} \in \mathscr{U}$.
- 4. For each $f, S(f) \neq 0$ Indeed $\{i|f(i) + 1 \neq 0\} = I \in \mathscr{U}$
- 5. Induction Principle. We have to modify what it means to be a set for this to be true. Since $\mathbb{N} \subset *\mathbb{N}$ would obviously be a contraexample.

Set redefinition one, star sets

Suppose we restrict the word set to be 'stars' of subsets of N If $A \subseteq \mathbb{N}$, then define

$$^*A = \{f | \{i | f(i) \in A\} \in \mathscr{U}\}$$

If $0 \in {}^{*}A$ then $0 \in A$ and if $f \in {}^{*}A \Rightarrow S(f) \in {}^{*}A$ then if $n \in A \Rightarrow S(n) \in A$ which implies $A = \mathbb{N}$ and hence ${}^{*}A = {}^{*}\mathbb{N}$. The these kind of star sets are called standard. All standard sets satisfy the inductive principle.

Set redefinition two, internal sets

An internal set A is one that belongs to $\mathscr{P}(\mathbb{N})$. What does this mean. Basically there is some statement P(x) so that $A = \{n | P(n)\}$. It turns out that these sets also satisfy the induction principle. Sets that are not internal are called external. The subset $\mathbb{N} \subseteq \mathscr{N}$ is external. That is all the problem sets are external. An easy example of an internal non-standard set is the $A = \{g | g \ge f\}$ where f is the infinite function defined several sections ago.

We illustrate this with a binary relation R given by $xRy \iff x \le y$, the for each x, the set $\{y|xRy\}$ is a subset of N. So for each $f: I \to \mathbb{N}$, the set

$$A = \{g : I \to \mathbb{N} | \{i | f(i) \le g(i)\} \in \mathscr{U} \}$$

is internal and is, in fact the set A in the paragraph above. This can be generalized to sets discribe by n-ary relations.

The reader may sigh in relieve as we skip this detour into formal logic. But the point is that the subset $\mathbb{N} \subseteq *\mathbb{N}$ cannot be singled out in the language. And hence the inductive principle is valid in \mathbb{N} .

Filters in General

A collection of sets \mathscr{F} is a filter if it satisfies the first three conditions of an ultrafiler. It is easy to get a free filter on any infinite set I. Just let

$$\mathscr{F} = \{ X \subseteq I | I \setminus X \text{ is finite} \}$$

It is the collection of co-finite sets. Every free ultrafilter will contain this \mathscr{F} . Non-free filters are fixed, each $a \in I$ has a principle ultrafilter $\mathscr{U}_a = \{X \subseteq I | a \in I\}$ every fixed filter is a subset of a principle ultrafilter.

Do free ultrafilters exist? Yes but one needs something like the Axiom of Choice. For example, a proof using Zorn's Lemma is easy since the union of a chain of filters is still a filter. And maximal filters are ultrafilters.

Exercise: prove these statements.

The existence of ultrafilters is strictly weaker then Axiom of Choice as it follows from the weaker Boolean Prime Ideal Theorem. A prime ideal in the boolean algebra of subsets of I is an ultrafilter, that is it is a maximal ideal.

Exercise: prove these cliams.