Tree Basis in Banach spaces

Steven F. Bellenot
Department of Mathematics
Florida State University

AMS Sectional, Florida International University, Miami, FL, April 1, 2006

Recursive Adaptation

Function in Green, Approximation (connecting circles) in Red

Schauder's basis for $C[0,1]$

Actually for codim 2 subspace of $\{f: f(0)=f(1)=0\}$.

Tree Definition

Predecessor function $\phi(n)=\lfloor n / 2\rfloor$

Tree Subset

Conditional, Tree, Unconditional

The sequence $\left\{e_{n}\right\}$ is basic when

$$
\left\|\sum_{n \in F} a_{n} e_{n}\right\| \leq M\left\|\sum_{n} a_{n} e_{n}\right\|
$$

- Conditional for all initial $F=\{1, \ldots N\}$
- Tree basis: for all tree subsets F.
- Unconditional for all finite F

Conditional, Tree, Unconditional

The sequence $\left\{e_{n}\right\}$ is basic when

$$
\left\|\sum_{n \in F} a_{n} e_{n}\right\| \leq M\left\|\sum_{n} a_{n} e_{n}\right\|
$$

- Conditional for all initial $F=\{1, \ldots N\}$
- Tree basis: for all tree subsets F.
- Unconditional for all finite F

Tree $=B \oplus U$ part I

Red dots are an unconditional basis sequence.

Tree $=B \oplus U$ part II

From $B \oplus U$ to Tree basis.

Tree Basis Examples/Properties

- Any unconditional basis is a tree basis.
- Tree like spaces $C[0,1], J T$, Haar basis in rearrangement invariant.
- The quasi-reflexive space $J \approx J \oplus \ell_{2}$.
- Cor: There are spaces with tree basis that don't have an unconditional basis
- Cor: Tree basis space has c_{0}, ℓ_{1} or reflexive subspace.
- Cor: There are spaces with basis that don't have a tree basis.

Tree Translation - limited subsymmetry

The tree translation Φ_{M} is defined recursively. It moves the whole tree to the subtree rooted at M.

- $\Phi_{M}(1)=M$
- $\Phi_{M}(2 n)=2 \Phi_{M}(n)$
- $\Phi_{M}(2 n+1)=2 \Phi_{M}(n)+1$
- $\Phi_{M}\left(\sum a_{n} e_{n}\right)=\sum a_{n} e_{\Phi_{M}(n)}$

If Φ_{M} is always an isometry, then the space is Tree Translation Invariant, and if Φ_{M} is always an isomorphism, the the space is Tree Translation Equivalent.

Invariance vs Equivalence

- $C[0,1], J T$ are tree translation invariant
- Tsirelson's space T is tree translation equivalent, not invariant - even when re-normed
- rearrangement invariant spaces are (in general only) tree translation equivalent
- There are Tsirelson superspaces which are not even tree translation equivalent

Properties of Tree Translation Equivalent

- A Tree Translation Equivalent space X is
- \approx hyperplanes
- $\approx X \oplus X$
- \approx unconditional sum $\left(X_{n}\right)$ with each $X_{n} \approx X$

The space X is primary, if $X \approx Y \oplus Z$ implies $X \approx Y$ or $X \approx Z$.

- Most Primary spaces are Tree Translation Equivalent (JT, $C[0,1]$, certain Rearrangement Invariant spaces)
- Tsirelson's T is not primary
- Does Tree Translation Invariance imply primary?
- Subsymmetric bases are Tree Translation Invariant.

Branch Invariant Tree Spaces

A generalization of symmetric bases.

- Permutation π is Branch Invariant if
- $\ell(i)=\ell(\pi(i))$ preserves level and
- $\phi(\pi(i))=\pi(\phi(i))$ preserves branches
- A tree basis $\left\{e_{n}\right\}$ is Branch Invariant if for branch invariant permutations π

$$
\left\|\sum a_{n} e_{n}\right\|=\left\|\sum a_{n} e_{\pi(n)}\right\|
$$

Examples Branch Invariant

- $J T$, rearrangement invariant spaces
- Not $C[0,1]$, some branches c_{0}, some the summing basis.
- T can be renormed to be Branch Invariant

Rademachers complemented

In a branch invariant tree basis, the projection

$$
P\left(\sum a_{i} e_{i}\right)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{2^{n-1}} a_{2^{n}+i}\right)\left(\sum_{i=0}^{2^{n}-1} e_{2^{n}+i}\right) / 2^{n}
$$

has norm one.
For the Haar basis, this is the projection onto the Rademachers.

Summary

- The Tree basis is equivalent to $B \oplus U$
- The Tree Translation Equivalence \approx hyperplanes, squares, $\mathrm{UD}\left(X_{n} \approx X\right)$; but not always primary, nor Tree Translaton Invariant.
- Question, is there a tree translation invariant space that is not primary?

