
TREE BASIS IN BANACH SPACES

STEVEN F. BELLENOT

Abstract. Tree basis in Banachs spaces, which are Schauder basis spaces with nice “tree
projections”, which is a property strictly between conditional and unconditional basis,
are classified. Stronger basis properties like symmetric, and subsymmetric have weaker
tree versions as well. These bases are motivated by well known adaptive approximation
algoritms.

1. Introduction

It is well known that there is a huge different between a Banach space having a (condi-
tional) Schauder basis and it having the more restrictive unconditional basis. The existence
of subspaces with Schauder basis was known to Banach, while examples of Banach spaces
with no unconditional basic sequence [8] are more recent and harder. A tree basis is defined
to be an intermediate property, strictly stronger than Schauder and strictly weaker than
unconditional. There are many tree based spaces like JT and wavelet bases, like the Haar
system, which are tree spaces by construction and have a natural tree basis. The spaces
with a tree basis includes most interesting Banach spaces that have a basis. Even James
quasi-reflexive space J has a tree basis (Proposition 3.10). Most properties of a Banach
space with tree basis can be obtained from the classification as the direct sum of a space
with unconditional basis and another space with Schauder basis (Proposition 3.8). So tree
basis are stronger than Schauder basis as they imply a complemented subspace with an
unconditional basis.

We briefly consider scrub basis as a generalization of a tree basis and show the existence
of non-trivial scrub basis that implied the existence of a tree basis (Proposition 3.11). Even
higher dimensional “trees” thus reduce to the usual one-dimensional binary tree.

Most of the tree based constructions have the stronger property that each rooted subtree
is isometric to the original space. We call these spaces tree translation invariant. Such
spaces have many nice properties, including being isomorphic to their square. (So J’s tree
basis is not tree transition invariant.) Such spaces are often primary and many rearrange-
ment invariant spaces are tree translation invariant. Another classical example of a tree
translation invariance is the classic Schrauder basis for C.

Although these properties are amusing in their own right, the motivation was originally to
abstract the adoptive approximations commonly used in many numerical algorithms, which
subdivide an interval only where the variation is relatively large and do not subdivide the
relatively flat spots.

2. Preliminaries

Our notation about bases in Banach spaces follows [14] or [11]. The sequence (en) is
Schauder (respectively unconditional) basis for its closed linear span X = [en] if there is a
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constant M to that ‖
∑

n∈F αnen‖ ≤ M‖
∑
αnen‖ for all x =

∑
αnen ∈ X and all initial

finite subsets F = {1, 2, 3 . . . k} ⊂ N (respectively all finite subsets F ⊂ N).
A Banach space X is isomorphic to its hyperplanes (respectively its square) if X ≈ X⊕K

where K is the scalar field (respectively if X ≈ X ⊕X). A space X is said to be primary if
X ≈ Y ⊕ Z implies that either X ≈ Y or X ≈ Z.

There are many common ways of descripting binary trees in analysis. We use the (binary
tree) predessor function φ : N\1 → N given by φ(n) = bn/2c, Where b·c is the floor or
greatest integer function. If φ(n) = m, then we say m is the parent of n and n is a child of
m. Each integer m has two children 2m and 2m+1. A finite or infinite sequence of integers
{ni} is an initial branch if n1 = 1 and φ(ni+1) = ni. Another common notation is for a
binary tree uses the Cantor set Γ = 2ω.

The subtree rooted at m, Sm is the collection of integers that are descendants of m under
φ. This has the same structure as the complete tree under a similarly function Φ = Φm

defined inductively by Φ(1) = m and Φ(2n) = 2Φ(n), Φ(2n+1) = 2Φ(n)+1. In the Cantor
set view, this is a dilation followed by a translation. We will call such Φ a tree translation.

The level of integer n, `(n) = blog 2nc is the number of generations to the integer 1,
the root of the tree. A branch permutation β is permutation on N that preserves 1 and
parenthood. A branch permutation clearly preserves levels while permuting the branches.

3. Tree basis

Definition 3.1. A finite subset F ⊂ N is a tree-subset if n ∈ F\1 implies its predessor
φ(n) ∈ F . A basis (en) for X is a tree basis if there is a constant M < ∞ for that for all
finite tree subsets F and x =

∑
αnen ∈ X

‖
∑

n∈F
αnen‖ ≤M‖

∑
αnen‖

Remark. The space X can be renormed so that the constant M is one. The existence of
a tree basis condition is strictly stronger than the existence of a basis Propostion 3.8 and
strictly weaker than an unconditional basis Propostion (3.10). However, our first chore is
to show that (in some sense) a tree basis is the only intermediate notion between Schauder
and unconditional basis.

Definition 3.2. A function φ : N\{1} → N is called a (scrub) predecessor function if
φ(n) < n for all integers n.

Remark. The condition φ(n) < n has two effects. Most importantly it requires well-
foundedness, that is there are no sequences (ni)∞i=1 so that φ(ni) = ni+1. Secondly, it
implies there is a single initial integer, 1, that has no predecessor, and it is the root. This
second condition is unimportant as multiple roots (even infinitely many roots are easily
handled).

Definition 3.3. Given a precessor function φ we define a splitting or branching node to
be an integer n with more than one solution to φ(m) = n. Again φ(m) = n implies n is
the parent of m and m is a child of n. Inductively to notions of ancestor and descent are
also defined as they are for trees. a set {ni} ⊂ N is independent if i 6= j implies ni and
nj are unrelated, neither is a descendent of the other. Independent sequences are mutally
incomparable.

Definition 3.4. Given a precessor function φ, we define a finite subset F ⊂ N is a scrub
subset if n ∈ F\{1} implies φ(n) ∈ F . A basis (en) for X is a scrub basis of there is a
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constant M <∞ so that for all finite scrub subsets F and x =
∑
αnen ∈ X.

‖
∑

n∈F
αnen‖ ≤M‖

∑
αnen‖

Lemma 3.5. If φ is a precessor function, F an infinite scrub subset and (en) a scrub basis,
then the projection P (

∑
αnen) =

∑
n∈F αnen is bounded by the scrub basis constant M .

Proof. Let Fk = F ∩ {1, . . . k}. Since each Fk is a scrub subset of N, the projections
Pk(
∑
αnen) =

∑
n∈Fk αnen are uniformly bounded in norm by some M . If

∑
αnen has

norm one, then

‖
∑
n∈F
p≤n≤q

αnen‖ = Pq(
q∑

n=p

αnen) ≤M‖
q∑

n=p

αnen‖

hence Pk(
∑
αnen)→ P (

∑
αnen) �

Proposition 3.6. If the predecessor function φ has in infinite independent set M ⊂ N,
then any scrub basis (en) has an unconditional basic sequence (en)n∈M which is naturally
complimented by

P (
∑

αnen) =
∑

n∈M
αnen

Proof. Let M be the infinite independent set, let F be the smallest scrub set containing M
and let G = F\M . G is also a scrub set and P = PF −PG where PF and PG are projections
given by Lemma 3.5

To see (en)n∈M is unconditional note for any finite subset H ⊂ M . The projection
PH(

∑
n∈m αnen) =

∑
n∈H αnen is PG∪H − PG which is bounded by 2M

�

Proposition 3.7. If the basis (en) has unconditional subsequence (en)n∈M , which is natu-
rally complemented, then there is a permutation π so that (eπ(n))is a tree basis.

Proof. Let N = N\M Let N = (ni) and M = (mj) be listing of these sets as increasing
subsequences of N. Define π(ni) = 2i−1 so that (eπ(ni)) is left most branch of the tree and
(eπ(mj)) is the rest. If F is a finite tree subset then so is F ∩ π(ni) = FL and FR = F −FL.
The projection onto F is the sum of the projection on FL, which is an initial segment of
π(ni), and FR, one of the unconditional projections. Thus (eπ(n)) is a tree basis �

Corollary 3.8. X has a tree basis if and only if X ≈ U ⊕ Y , where Y and U both have
basis, and U has an unconditional basis.
Corollary 3.9. A space with a tree-basis contains a subspace isomorphic to co, `1 or a
complemented infinite dimensional reflexive space.
Proposition 3.10. The space J , James quasi-reflexive space has a tree basis.

Proof. One common basis for J is the shrinking basis en with norm

‖
∑

αnen‖ = sup(
k∑
i=1

(αn(i+1) − αn(i))
2)

1
2

where the sup is over finite sequences n(1) < n(2) < . . . n(k) < n(k + 1). the projection

P (
∑
αnen)→

∞∑
n=1

(α2n+α2n+1)(e2n+e2n+1)/2 is a norm one projection with range isometric

to J . The projection Q+ I−P has range [(e2n− e2n+1)], and (e2n− e2n+1)∞n=1 is equivalent
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to the usual basis of Hilbert space. Thus the basis which alternates between these two basic
sequences e1 + e2, e1 − e2, e3 + e4, e3 − e4, ... is a basis which satisfies the hypothesis of
proposition 3.8 �

Remark. Since J ≈ J ⊕ `2 this also follows from Corolary 3.8.
Remark. Is is well known that J cannot have an unconditional basis and hence having a
tree basis is strictly weaker than having an unconditional basis.
Proposition 3.11. If φ is a non-trivial predecessor function and X has a φ scrub basis en,
then X has a tree basis.

Proof. Suppose for φ there is an integer n whose set of children M is infinite. This is an
independent set, so (en)n∈M is unconditional by Proposition 3.6 and X has a tree basis(bn)
Proposition 3.7. Otherwise φ has infinitely many splitting nodes. By the Infinity Lemma,
there is an infinite branch (ni) which contains infinitely many splitting nodes (n(s(i)))i. For
each i, there must be m(i) 6= n(s(i) + 1) but φ(m(i)) = n(s(i)). It follows that M = (m(i))
is an independent set. Thus, as in the first case X has a tree basis. �

Remark. The “minimal” scrub φ is given by φ(n + 1) = n which only requires the same
projections as those for a Schauder basis. Since there spaces with a basis with no non-trivial
decomposition into Y ⊕ Z. These must be spaces without tree basis.

The next step would be X ⊕ X, which has a φ scrub basis for φ given by φ(n) =
max{1, n − 2}. Which has exactly one split note 1. Clearly X ⊕X is not isomporphic to
X. There is an infinite family of trivial precessor functions realizable by the finite sums
X ⊕ ...⊕X which do not have tree basis.

4. Tree Translation Invariance

Given a tree basis (en) for X we will say X is tree translation equivalent (respectively
tree translation invariant) if each transformation T of the form T = Tm

T (
∑

αnen) =
∑

αneΦ(n)

where Φ = Φm is a tree translation, is an isomorphism (respectively an isometry).
Example 4.1. Any subsymmetric basis is tree translation invariant.
Example 4.2. The usual Schauder system for {f ∈ C : f(0) = f(1) = 0} is tree translation
invariant, but not unconditional.
Example 4.3. The Haar system in a rearrangement invariant function space X on [0, 1]
(actually the co-dimension one subspace of functions f so that

∫
f = 0) is tree translation

equivalent.
Example 4.4. Tsirelson space T is an example of a space that is tree translation equivalent
but not tree translation invariant. Tree translation equivalence follows since the growth rate
of the function Φm(n) function is bounded [4]. Attempts to renorm the space T to make
it tree translation invariant using the usual construction fail as this will generate a norm
equivalent to `1-norm.
Example 4.5. In [5], a superspace S of a Tsirelson spaces is constructed that is not isomor-
phic to its square. By the theorem below, S is not even tree translation equivalent. However
one side of the equation holds as ‖

∑
αnen‖ ≤ ‖Tm(

∑
αnen)‖.

Tree spaces with bases satisfying similar one sided dominance conditions were also con-
structed in [3].
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Theorem 4.6. If (en) is a tree translation equivalent basis for X, then
(1) X is isomorphic to its hyperplanes
(2) X is isoporphic to its square X ⊕X
(3) X is isomorphic to an unconditional decomposition (Xn) with each Xn naturally

isomorphic to X
Proof Let K be the scaler field.
(1) The isomorphism T2 maps the complemented subspace W = [e2, e4, e8, ...] so W is

isomorphic to W ⊕K. Hence X ⊕K ≈W ⊕ Z ⊕K ≈W ⊕ Z ≈ X.
(2) Let the isomorphisms T2 and T3 have ranges X2 and X3 respectively. Clearly X ≈

X2 ⊕X3 ⊕K ≈ X ⊕X ⊕K ≈ X ⊕X by part (1).
(3) Let W1 = X2 ∪ e1] and Wn+1 = T3(Wn). The (Wn) form a decomposition of X and

T3 provides a translation for this decomposition. Obviously Wn ≈ X ⊕ K ≈ X by
part (1).

Remark. Most of the known primary spaces (with exception of J [6]) are tree translation
equivalent. It is not known if all symmetric sequence spaces are primary. The usual con-
ditions to imply primary can be modeled after [7], [2] and [1]. To apply the Pelcynski
decompostion method one needs two facts in addition to the theorem above. First we need
a condition that says X ≈ Y ⊕Z implies either Y or Z has a complemented copy of X. For
tree spaces, this could be done with the following complemented subtree condition below.
Second we need a way to shift Y into the the unconditional decomposition (Xn) ≈ (Yn⊕Zn)
while holding the Zn fixed. The usual proves require additional information on the uncon-
ditional decomposition for example the fact it is a `2 sum in the JT case.
Definition 4.7. A subtree S of T is a subset of the integers so that the order inherited
from T is order isomorphic to the order of a binary tree. A tree basis is said to have the
complemented subtree condition if for each subtree S, the basis (en)n∈S is equivalent to (en)
and the projection PS(

∑
αnen) =

∑
n∈S αnen is bounded.

Example 4.8. The Tsirelson space T fails the complemented subtree condition as we can
pick a subtree S = (i(n))n so that the rate of growth is too large for (en)n∈S to be equivalent
to (en) [4].

5. Branch invariant tree spaces

Definition 5.1. A tree basis is branch invariant if for every branch permutation β the
operator

Tβ(
∑

αnen) =
∑

αneβ(n)

is an isometry.
If δ, γ ⊂ N are a branches, then the basis {(en)n ∈ δ} and {(en)n ∈ γ} are isometrically

equivalent in a branch invariant space.
Example 5.2. Rearrangement invariant spaces and symmetric spaces are examples of
branch invariant spaces as is JT. Since the basis of JT is conditional, branch invariance
doesn’t imply unconditionality.
Example 5.3. The space C is tree translation invariant but not branach invariant. Indeed,
if n(i) = 2i−1, the (en(i)) is equivalent to usual basis of C, while if m(i) is inductively
defined by m(i) = 1, m(2n + 1) = 2m(2n) and m(2n + 2) = 2(m(2n + 1)) + 1 then (em(i))
is equivalent to the summing basis.



6 Steven F. Bellenot

Proposition 5.4. A branach invariant tree basis, the projection

P (
∑

αiei) =
∞∑
n=0

(
2n−1∑
l=0

α2n+i)(
2n−1∑
l=0

exn+i)/2n

has norm one.

Proof. If
∑
αiei is non-zero only on when `(i) ≤ n then P is the average of 2n branch

permutations generated by the permutations on level n integers. �

Remark. If the basis is the standard Haar basis, the range of this projection is the closed
linear span of the Rademacher functions.

References

[1] D. Alspach, P. Enflo and E. Odell On the structure of separable Lp spaces (1 < p < ∞) Studia
Math 60 (1977), 79–90.

[2] A.D. Andrew, The Banach space JT is primary, Pacific J. Math 108 (1983), 9–17.
[3] S.F. Bellenot, R Haydon and E. Odell, Quasi-reflexive and tree spaces constructed in the spirit of

RC James Contem. Math 85 (1989), 19–43.
[4] S.F. Bellenot The Banach space T and the fast growing hierarchy from logic, Israel J. Math 47

(1984), 305–313.
[5] S.F. Bellenot Tsirelson superspaces and lp, J. Functional Analysis, 69 (1986), 207–228.
[6] P.G. Casazza James’ quasi-reflexive space is primary, Israel J. Math 26 (1977), 294–305.
[7] P.G. Casazza and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math 52

(1974), 189–193.
[8] W Gowers and B Maurey The unconditional basic sequence problem, J. Amer Math Soc 6 (1993),

851–874.
[9] W. Gowers A Solution to Banach’s hyperplane problem, Ball London math Soc 26 (1994), 523–530.

[10] W.T. Gowers An infinite Ramsey theorem and som Banach spaces dichoton=mies, Amer of Math
156 (2002), 3 797–833.

[11] W.B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach space, in [12] (2001),
1–84.

[12] W.B. Johnson and J. Lindenstrauss (Editors), Handbook of the geometry of Banach spaces, Volume
1 Elsevier, Amsterdam, 2001.

[13] N.J. Kalton A remark on Banach spaces isomorphic to their squares, Contemp. Math 232 (1999),
211–217.

[14] J. Lindenstraus and L. Tzafriri, Classical Banach spaces I: Sequence spaces Springer-Verlag, Berlin
and New York, 1977.

[15] J. Lindenstraus and L. Tzafriri, Classical Banach spaces II: Function spaces, Springer-Verlag, Berlin
and New York, 1979.

Department of Mathematics, Florida State University, Tallahassee, FL

32306-4510

E-mail address: bellenot@math.fsu.edu


