Spring 2013 Welcome

Steven F. Bellenot
Department of Mathematics
Florida State University

Spring 2013

Florida State University, Tallahassee, FL Jan 4, 2013

Talking points

- The square root of two is irrational.
- The riaht way to do email. You don't have to answer it.
- Send them up to the Coordinators or me.
- You are the math department, most students do not see a research instructor.

Talking points

- The square root of two is irrational.
- The right way to do email. You don't have to answer it.
- Send them up to the Coordinators or me.
- You are the math department, most students do not see a research instructor.

Talking points

- The square root of two is irrational.
- The right way to do email. You don't have to answer it.
- Send them up to the Coordinators or me.
- You are the math department, most students do not see a research instructor.

Talking points

- The square root of two is irrational.
- The right way to do email. You don't have to answer it.
- Send them up to the Coordinators or me.
- You are the math department, most students do not see a research instructor.

Talking points

- The square root of two is irrational.
- The right way to do email. You don't have to answer it.
- Send them up to the Coordinators or me.
- You are the math department, most students do not see a research instructor.

All new software

Student Central

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM. The new way: RC_PLN_UG_Appld/Cmptatn Math and RC_PLN_GD_Mathematics (Appld)

All new software

mige

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM. The new way: RC_PLN_UG_Appld/Cmptatn Math and RC_PLN_GD_Mathematics (Appld)

All new software

$\operatorname{mig} E$

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM. The new way: RC_PLN_UG_Appld/Cmptatn Math and RC_PLN_GD_Mathematics (Appld)

All new software

mige

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM. The new way: RC_PLN_UG_Appld/Cmptatn Math and RC_PLN_GD_Mathematics (Appld)

All new software

mige

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM. The new way: RC_PLN_UG_Appld/Cmptatn Math and RC_PLN_GD_Mathematics (Appld)

All new software

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM.

All new software

- Degree programs called Careers
- Degrees shorten to BACH DOCT MASTR
- Majors codes disappear: 116811, 11=Arts and Sciences, 68=Mathematics, 11=sequence number for ACM. The new way: RC_PLN_UG_Appld/Cmptatn Math and RC_PLN_GD_Mathematics (Appld)

The Pythagorean: Hippasus of Metapontum

Infinite Descent, Escher's Waterfall

Suppose $\sqrt{2}=a / b$ in lowest terms

Let $a_{n}=(\sqrt{2}-1)^{n} a$ and $b_{n}=(\sqrt{2}-1)^{n} b$. Since $1<\sqrt{2}<2$,

$a_{n+1}=(\sqrt{2}-1) a_{n}=2 b_{n}-a_{n}, \quad b_{n+1}=(\sqrt{2}-1) b_{n}=a_{n}-b_{n}$
Both sequences are strictly decreasing sequences of nositive integers.

Suppose $\sqrt{2}=a / b$ in lowest terms

Let $a_{n}=(\sqrt{2}-1)^{n} a$ and $b_{n}=(\sqrt{2}-1)^{n} b$. Since $1<\sqrt{2}<2$, $0<\sqrt{2}-1<1$ and

$a_{n+1}=(\sqrt{2}-1) a_{n}=2 b_{n}-a_{n}, \quad b_{n+1}=(\sqrt{2}-1) b_{n}=a_{n}-b_{n}$
Both sequences are strictly decreasing sequences of positive integers.

Suppose $\sqrt{2}=a / b$ in lowest terms

Let $a_{n}=(\sqrt{2}-1)^{n} a$ and $b_{n}=(\sqrt{2}-1)^{n} b$. Since $1<\sqrt{2}<2$, $0<\sqrt{2}-1<1$ and

$$
a_{0}>a_{1}>a_{2}>\cdots>0, \quad b_{0}>b_{1}>b_{2}>\cdots>0
$$

$$
\frac{a_{n}}{b_{n}}=\frac{a}{b}=\sqrt{2} \Longrightarrow \sqrt{2} b_{n}=a_{n} \quad \sqrt{2} a_{n}=2 b_{n}
$$

$a_{n+1}=(\sqrt{2}-1) a_{n}=2 b_{n}-a_{n}, \quad b_{n+1}=(\sqrt{2}-1) b_{n}=a_{n}-b_{n}$
Both sequences are strictly decreasing sequences of positive integers.

Suppose $\sqrt{2}=a / b$ in lowest terms

Let $a_{n}=(\sqrt{2}-1)^{n} a$ and $b_{n}=(\sqrt{2}-1)^{n} b$. Since $1<\sqrt{2}<2$, $0<\sqrt{2}-1<1$ and

$$
a_{0}>a_{1}>a_{2}>\cdots>0, \quad b_{0}>b_{1}>b_{2}>\cdots>0
$$

$$
\frac{a_{n}}{b_{n}}=\frac{a}{b}=\sqrt{2} \Longrightarrow \sqrt{2} b_{n}=a_{n} \quad \sqrt{2} a_{n}=2 b_{n}
$$

$a_{n+1}=(\sqrt{2}-1) a_{n}=2 b_{n}-a_{n}, \quad b_{n+1}=(\sqrt{2}-1) b_{n}=a_{n}-b_{n}$
Both sequences are strictly decreasing sequences of positive integers.

Suppose $\sqrt{2}=a / b$ in lowest terms

Let $a_{n}=(\sqrt{2}-1)^{n} a$ and $b_{n}=(\sqrt{2}-1)^{n} b$. Since $1<\sqrt{2}<2$, $0<\sqrt{2}-1<1$ and

$$
a_{0}>a_{1}>a_{2}>\cdots>0, \quad b_{0}>b_{1}>b_{2}>\cdots>0
$$

$$
\frac{a_{n}}{b_{n}}=\frac{a}{b}=\sqrt{2} \Longrightarrow \sqrt{2} b_{n}=a_{n} \quad \sqrt{2} a_{n}=2 b_{n}
$$

$$
a_{n+1}=(\sqrt{2}-1) a_{n}=2 b_{n}-a_{n}, \quad b_{n+1}=(\sqrt{2}-1) b_{n}=a_{n}-b_{n}
$$

Both sequences are strictly decreasing sequences of positive integers.

Suppose $\sqrt{2}=a / b$ in lowest terms

Let $a_{n}=(\sqrt{2}-1)^{n} a$ and $b_{n}=(\sqrt{2}-1)^{n} b$. Since $1<\sqrt{2}<2$, $0<\sqrt{2}-1<1$ and

$$
a_{0}>a_{1}>a_{2}>\cdots>0, \quad b_{0}>b_{1}>b_{2}>\cdots>0
$$

$$
\frac{a_{n}}{b_{n}}=\frac{a}{b}=\sqrt{2} \Longrightarrow \sqrt{2} b_{n}=a_{n} \quad \sqrt{2} a_{n}=2 b_{n}
$$

$$
a_{n+1}=(\sqrt{2}-1) a_{n}=2 b_{n}-a_{n}, \quad b_{n+1}=(\sqrt{2}-1) b_{n}=a_{n}-b_{n}
$$

Both sequences are strictly decreasing sequences of positive integers.

It Ain't Me Babe

BobDylan

BringingltAll BackHome

For integers a and $b,|\sqrt{2}-a / b|>1 / 3 b^{2}$

Case 1: $0 \leq a / b \leq 3 / 2$,

Case 2: $a / b>3 / 2$,
$|\sqrt{2}-a / b|>|3 / 2-a| b\left|=|3 b-2 a| /|2 b|>1 / 3 b^{2}\right.$
Case 3: $a / b<0,|\sqrt{2}-a / b|>1>1 / 3 b^{2}$

For integers a and $b,|\sqrt{2}-a / b|>1 / 3 b^{2}$

Case 1: $0 \leq a / b \leq 3 / 2$,

Case 2: $a / b>3 / 2$,
$|\sqrt{2}-a / b|>|3 / 2-a / b|=|3 b-2 a| / 2 b \mid>1 / 3 b^{2}$
Case $3: a / b<0,|\sqrt{2}-a / b|>1>1 / 3 b^{2}$

For integers a and $b,|\sqrt{2}-a / b|>1 / 3 b^{2}$

Case 1: $0 \leq a / b \leq 3 / 2$,
$|\sqrt{2}-a / b|=|\sqrt{2}-a / b| \frac{|\sqrt{2}+a / b|}{|\sqrt{2}+a / b|}=\frac{\left|2-a^{2} / b^{2}\right|}{\sqrt{2}+a / b}>\frac{\left|2 b^{2}-a^{2}\right|}{3 b^{2}} \geq \frac{1}{3 b^{2}}$

For integers a and $b,|\sqrt{2}-a / b|>1 / 3 b^{2}$

Case 1: $0 \leq a / b \leq 3 / 2$,
$|\sqrt{2}-a / b|=|\sqrt{2}-a / b| \frac{|\sqrt{2}+a / b|}{|\sqrt{2}+a / b|}=\frac{\left|2-a^{2} / b^{2}\right|}{\sqrt{2}+a / b}>\frac{\left|2 b^{2}-a^{2}\right|}{3 b^{2}} \geq \frac{1}{3 b^{2}}$
Case 2: $a / b>3 / 2$,

For integers a and $b,|\sqrt{2}-a / b|>1 / 3 b^{2}$

Case 1: $0 \leq a / b \leq 3 / 2$,
$|\sqrt{2}-a / b|=|\sqrt{2}-a / b| \frac{|\sqrt{2}+a / b|}{|\sqrt{2}+a / b|}=\frac{\left|2-a^{2} / b^{2}\right|}{\sqrt{2}+a / b}>\frac{\left|2 b^{2}-a^{2}\right|}{3 b^{2}} \geq \frac{1}{3 b^{2}}$
Case 2: $a / b>3 / 2$,
$|\sqrt{2}-a / b|>|3 / 2-a / b|=|3 b-2 a| /|2 b|>1 / 3 b^{2}$

For integers a and $b,|\sqrt{2}-a / b|>1 / 3 b^{2}$

Case 1: $0 \leq a / b \leq 3 / 2$,
$|\sqrt{2}-a / b|=|\sqrt{2}-a / b| \frac{|\sqrt{2}+a / b|}{|\sqrt{2}+a / b|}=\frac{\left|2-a^{2} / b^{2}\right|}{\sqrt{2}+a / b}>\frac{\left|2 b^{2}-a^{2}\right|}{3 b^{2}} \geq \frac{1}{3 b^{2}}$
Case 2: $a / b>3 / 2$,
$|\sqrt{2}-a / b|>|3 / 2-a / b|=|3 b-2 a| /|2 b|>1 / 3 b^{2}$
Case 3: $a / b<0$,

Case 1: $0 \leq a / b \leq 3 / 2$,
$|\sqrt{2}-a / b|=|\sqrt{2}-a / b| \frac{|\sqrt{2}+a / b|}{|\sqrt{2}+a / b|}=\frac{\left|2-a^{2} / b^{2}\right|}{\sqrt{2}+a / b}>\frac{\left|2 b^{2}-a^{2}\right|}{3 b^{2}} \geq \frac{1}{3 b^{2}}$
Case 2: $a / b>3 / 2$,
$|\sqrt{2}-a / b|>|3 / 2-a / b|=|3 b-2 a| /|2 b|>1 / 3 b^{2}$
Case 3: $a / b<0,|\sqrt{2}-a / b|>1>1 / 3 b^{2}$

The advisor is not your friend

MAC1140 Theorem about Rational Roots

Theorem. If p and q are relatively prime and p / q is a root of $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}$ with integer coefficients then $p \mid a_{0}$ and $q \mid a_{n}$.
Proof: Substitute $x=p / q$ and multiply by q^{n}
divisible by p

MAC1140 Theorem about Rational Roots

Theorem. If p and q are relatively prime and p / q is a root of $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}$ with integer coefficients then
$p \mid a_{0}$ and $q \mid a_{n}$.
Proof: Substitute $x=p / q$ and multiply by q^{n}
divisible by p

$$
\begin{aligned}
& \overbrace{a_{n} p^{n}+\underbrace{}_{n-1} p^{n-1} q+\cdots+a_{1} p q^{n-1}+a_{0} q^{n}}=0 \\
& \text { divisible by } a
\end{aligned}
$$

Dead On or Completely Off Base

Corollary: A root of monic polynomial is either an integer or an irrational.
Because $q \mid 1$ it, follows $q= \pm 1$.
Since 2 is not a square, $\sqrt{2}$ is a non-integer root of the monic polynomial $x^{2}-2$ and hence is irrational.

Dead On or Completely Off Base

Corollary: A root of monic polynomial is either an integer or an irrational.
Because $q \mid 1 \mathrm{it}$, follows $q= \pm 1$.
Since 2 is not a square, $\sqrt{2}$ is a non-integer root of the monic polynomial $x^{2}-2$ and hence is irrational.

Dead On or Completely Off Base

Corollary: A root of monic polynomial is either an integer or an irrational.
Because $q \mid 1 \mathrm{it}$, follows $q= \pm 1$.
Since 2 is not a square, $\sqrt{2}$ is a non-integer root of the monic polynomial $x^{2}-2$ and hence is irrational.

