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Math, It’s Fundamental

But it is not easy
There is no royal road
There is no math pill
Skills are not FCAT-able
But it is a human activity
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Fundamental Theorems

Fundamental Theorem of Arithemetic
Each integer n > 1 has a unique prime factorialization

n = p1p2 · · ·pk

with p1 ≤ p2 · · · ≤ pk

Fundamental Theorem of Algebra
Each non-constant polynomial has a root
Fundamental Theorem of Calculus
Part I: If f (t) is continuous,

F (x) =

∫ x

a
f (t) dt

then F ′(x) = f (x)
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Fundamental Theorem of Arithmetic

Euclid’s Elements (≈ 300 bce) contains a proof. Three of the 13
books, VII, VIII and IX are about number theory. (But Euclid
had no notation for the product of more than 3 numbers.)
Known to the Egyptian Ahmes (≈ 1550 bce?) who copied a
earlier source:
Directions for Knowing All Dark Things (≈ 1650 bce)
(discovered in 2002).
Some people say Gauss gave the first full and correct proof in
Disquisitiones Arithmeticae. (written 1798 when Gauss was 21,
published in 1801)
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Proof

Existence:
By Strong induction:
Suppose n is first integer for which existence fails. Then n
cannot be prime, so n = mk with m, k < n. But both m and k
are products of primes, so n is also a product of primes.

One Cryptography Method depends on it being very hard to
find m and k

Uniqueness:
Euclid’s lemma: If p is prime and p|ab, then p|a or p|q.
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Uniqueness Proof Cont

Suppose not:
find the smallest counterexample with

p1p2 · · ·pk = q1q2 · · ·qm

If follows that pi 6= qj ,
or we could cancel from both sides yielding a smaller
counterexample.
We can assume p1 < q1.
By Euclid’s lemma p1|qj for some j .
Which implies qj is not prime.
A contradiction, so there is no counterexample.
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Fundamental Theorem of Calculus, Part I

James Gregory (1638-1675) proved a restricted version
Isaac Barrow (1630-1677) proved a general version,
geometric proof without using limits.
Isaac Newton (1643-1727) Barrow’s student, developed
limits and wanted to call the subject:
the science of fluents and fluxions
Gottfried Leibniz (1646-1716) developed limits and gave
Calculus its name. Who won the calculus wars?
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Fundamental Theorem of Calculus, Part 2

Second part Fund Thm: If F is an anti-derivative of f then,∫ b

a
f (t) dt = F (b)− F (a)

(Newton-Leibniz Axiom)
the 2nd part is stronger as f does not have to be
continuous. F (x) = x2 sin(1/x) and
F ′(x) = f (x) = x sin(1/x)− cos(1/x) but F ′(0) = 0.
Current textbooks use Riemann integration Riemann
(1826-1866) was a student of Gauss.
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Proof of Part I

Steven F. Bellenot It’s Fundamental



Fundamental Theorem of Algebra

Every non-constant polynomial with complex coefficients has a
complex root.
Known in some form to Rother 1608 (may have n solutions)
and Girard 1629 (has n solutions, but not all polynomials).
Many attempted proofs: D’Alembert 1746 Euler 1749, de
Foncenex 1759, Lagrange 1772, Laplace 1795 assumed the
existence of a root and then showed it was a complex number.
Gauss 1799 gave a geometric proof in his PhD thesis. Argand
1806 and Gauss 1816 are rigorous by today’s standards.
Weierstrass 1891 gave a constructive proof.
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Neither Algebra nor Fundamental?

Almost all proofs require some analysis and the fastest proofs
use analytic function theory. A proof must use the
completeness of the reals.

Nor is the theorem fundamental for modern algebra. There are
other fundamental theorems in algebra: FT of Galois, FT on
homomorphisms, FT of finitely generated abelian groups.

Steven F. Bellenot It’s Fundamental



Neither Algebra nor Fundamental?

Almost all proofs require some analysis and the fastest proofs
use analytic function theory. A proof must use the
completeness of the reals.

Nor is the theorem fundamental for modern algebra. There are
other fundamental theorems in algebra: FT of Galois, FT on
homomorphisms, FT of finitely generated abelian groups.

Steven F. Bellenot It’s Fundamental



Newton’s Method
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Constructive Proof

Start almost anywhere z0 in the complex plane, repeat
Newton’s method

zn+1 = zn − P(zn)/P ′(zn)

and the sequence (zn) will converge to a root of P(z)

If P(z) = z3 − 1 with roots 1, exp(2πi/3) = −1
2 + i

√
3

2 and
exp(−2πi/3) = −1

2 − i
√

3
2 , then

zn+1 = (2z3
n + 1)/3z2

n
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Degree 3 implies Chaos
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Other Fundamental Theorems

Ordinary Differential Equations: one might call the existence
and unqueness of solutions fundamental but we don’t.

Strang (1993) declared a theorem to be the Fundamental
Theorem of Linear Algebra.
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Graph Theory

The color points are vertices, the connecting lines are are
edges.The degree of a vertex is the number of incident edges.
Here each vertex has degree 3. This graph is the Petersen
graph, the figure shows it can be 3-colored, adjacent vertices
have different colors. The web is just one big graph.
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The Handshaking Lemma

∑
v∈V

deg(v) = 2|E |

The sum of the degrees of the vertices is equal to twice the
number of edges.
Proof: (Euler 1736) double counting. Count (v , e) where v is
incident to e, two ways. Vertex v belongs to deg(v) pairs while
edge e belongs to 2 pairs, one for each vertex.
This is the first paper on Graph Theory. It could easily be
elected to being the fundamental theory of graph theory (or
topology).
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The Handshaking Lemma

There is always an even number of odd vertices. (Proof: the
RHS, 2|E | is even, the LHS would be odd if there were an odd
number of vertices of odd degree.)

In a honor’s ceremony, people shake hands, and an even
number of people must have shaken an odd number of others
peoples hands.

Where is Gauss?
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PhD Defenses

1 SF Bellenot
2 RC James (one of two advisors)
3 AD Michal
4 M Bocher
5 Felix Klein
6 J Plucker (one of two advisors)
7 CL Gerling
8 Gauss
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Just Handshakes

1 SF Bellenot
2 Melvin Henriksen (Chairman of HMC) in 1960’s
3 Artur Rosenthal in the 1950’s
4 Richard Dedekind around 1909
5 Gauss – Dedekind’s major professor 1851
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