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λ, e, π are transcendental

Liouville, λ, 1844/51 Hermite, e, 1873 Lindemann, π, 1882

Cantor (1874) Non-constructively:
the transcendental numbers are uncountable.
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Rational Numbers

A number α is rational if for some integers p and q

α =
p
q

otherwise α is irrational.
Note α is root of the degree 1 integer-coefficient polynomial:

f (x) = qx − p

Steven F. Bellenot Transcending the Irrationality



Algebraic Numbers

A number α is algebraic if it is a root of a polynomial f (x) with
integer coefficients, otherwise α is transcendental.
The degree of a an algebraic number α is is the smallest degree
of an all integer coefficient polynomial f (x) so that f (α) = 0.
If the degree is one, then α is rational.
Example:

√
2 is a root of x2 − 2 = (x −

√
2)(x +

√
2) so

√
2 is

algebraic of degree no more than 2. The degree will be exactly
two; once we show

√
2 is irrational.
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√
2 is irrational

There is an ε > 0 and a C > 0 so that for integers p and q,∣∣∣∣√2− p
q

∣∣∣∣ < ε =⇒
∣∣∣∣√2− p

q

∣∣∣∣ >
C
q2

The statement above is stronger than saying
√

2 is irrational. I
called it the “it ain’t me babe” inequality.
The ε > 0 condition is a dodge; an unnecessary condition: it is
a straightforward exercise to show there is a C′ > 0∣∣∣∣√2− p

q

∣∣∣∣ ≥ ε =⇒
∣∣∣∣√2− p

q

∣∣∣∣ >
C′

q2

Indeed, any positive C′ < ε works.
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√
2 is irrational

For integers p and q with |
√

2− p/q| < ε = 0.08, then for
C = 1/3,

|
√

2− p
q
| ≥ C

q2

∣∣∣∣√2− p
q

∣∣∣∣ =

∣∣∣∣∣(√2− p
q

)

√
2 + p

q√
2 + p

q

∣∣∣∣∣ ≥ |2q2 − p2|
3q2 ≥ 1

3q2
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The Key Idea

The number
√

2 is far away from any rational number.
Perhaps the same is true for irrational algebraic numbers.
There are numbers that are not so far away and hence would
be transcendental.
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Liouville: λ is transcendental

λ =
∞∑

n=1

10−n!

λ = sum of

0.1

0.01

0.000001

0.000000000000000000000001

0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001

. . .

λ is zero in decimal places from n! + 1 to (n + 1)!− 1 which is
n!n − 2 zeros.

λ = 0.110001 0 . . . 0︸ ︷︷ ︸
16 0′s

1 0 . . . 0︸ ︷︷ ︸
94 0′s

1 0 . . . 0︸ ︷︷ ︸
598 0′s

1 0 . . . 0︸ ︷︷ ︸
4318 0′s

1 0 . . . 0︸ ︷︷ ︸
34278

1 0 . . . 0︸ ︷︷ ︸
322558

10 . . .
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Estimate

Let qk = 10k!, then there are integers pk and qk

pk

qk
=

k∑
n=1

10−n!

Note
qk+1 = 10(k+1)! = (10k!)k+1

So there are integers pk and qk = 10k! with

|λ− pk

qk
| < 2

qk+1
k

Insight: irrational algebraic numbers cannot be so well
approximated by rationals.
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MVT to the rescue
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f (p/q) = r/qd

f (x) = adxd + ad−1xd−1 + · · ·a1x + a0

f
(

p
q

)
= ad

(
p
q

)d

+ ad−1

(
p
q

)d−1

+ · · ·a1

(
p
q

)
+ a0

f
(

p
q

)
=

adpd + ad−1pd−1q + · · ·a1pqd−1 + a0qd

qd

So f (p/q) = r/qd where

r = adpd + ad−1pd−1q + · · ·a1pqd−1 + a0qd

If p/q is not a root of f , then |f (p/q)| > 1/qd
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Side Note About Multiple Roots

If f (x) is a polynomial where α is a multiple root, then

f (x) = (x − α)2g(x)

and so f ′(x) also has α as root. The converse is also true.
So each algebraic number α is a single root of the polynomial
f (x) of of minimal degreee d so that f (α) = 0. (If it is not,
replace f by the smaller degree f ′, a contradiction)
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Liouville’s Estimate

Theorem. If the algebraic number α has degree d , then there is
an ε > 0 and C > 0, so for all integers p and q we have∣∣∣∣α− p

q

∣∣∣∣ < ε =⇒
∣∣∣∣α− p

q

∣∣∣∣ >
C
qd

Proof: Let ε > 0, so that f (x) 6= 0 for 0 < |x − α| < ε. There is a
C so that |f ′(x)| < C , for |α− x | < ε. Apply the MVT:∣∣∣∣∣∣

f (α)− f
(

p
q

)
α− p

q

∣∣∣∣∣∣ = |f ′(ξ)| < C

1
qd ≤ |f

(
p
q

)
| < C

∣∣∣∣α− p
q

∣∣∣∣
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The contradiction

1
qd

k
≤ C

∣∣∣∣α− pk

qk

∣∣∣∣ < C
2

qk+1
k

But this is impossible since it implies

1 < 2Cqd−k−1
k

but the RHS goes to zero as as k →∞
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There are transcendental numbers

Since λ is not algebraic, transcendental numbers exist.
However λ was created. How about an already existing
number?
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Your assignment

Exercise: Show e =
∑∞

i=0 1/i! is irrational.
Who proved (and when) if α algebraic and irrational ε > 0, then
there is a C = C(α, ε) so for all intergers p and q,∣∣∣∣α− p

q

∣∣∣∣ >
C

q2+ε
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e is transcendental

The contradiction:
LHS = RHS

We will show that the RHS is a non-zero integer and that

lim
p→∞

LHS = 0

using the assumption that for some integer coefficient
polynomial

aded + ad−1ed−1 + · · ·+ a1e1 + a0e0 = 0
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Product Rule

The n-derivative of f = gh is
f (1) = g(1)h(0) + g(0)h(1)

f (2) = g(2)h(0) + 2g(1)h(1) + g(0)h(2)

f (3) = g(3)h(0) + 3g(2)h(1) + 3g(1)h(2) + g(0)h(3)

. . .

f (n) =
n∑

i=0

(
n
i

)
g(n−i)h(i)
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e is transcendental RHS

Lemma
if h(x) is a polynomial with integer coefficients and
f (x) = (x − i)ph(x)/(p − 1)!, then the j-th derivative at i, f (j)(i)
is divisible by p.

The j-th derivative at i of g(x) = (x − i)p/(p − 1)! is zero at i if
j < p or j > p and is p when j = p. Each term in j-th derivative
of f has one these terms as a factor.
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e is transcendental RHS

Lemma

if f (x) = xp−1(x − 1)p(x − 2)p · · · (x −m)p/(p − 1)! and p > m
is a prime then the j-th derivative f (j)(0) is not divisible by p for
j ≥ p − 1

The j-th derivative of g(x) = xp−1/(p − 1)! is zero at 0 if
j < p − 1 or j ≥ p and is 1 when j = p − 1. Hence each term in
j-th derivative of f is either zero, or for large j , not divisible by p.
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A basic limit

lim
p→∞

Ap

(p − 1)!
= 0

Eventually the terms decrease exponentially once A/p < 1/2.

lim
p→∞

m(m+1)p−1

(p − 1)!
= 0

Let A = mm+1
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e is transcendental LHS

if f (x) = xp−1(x − 1)p(x − 2)p · · · (x −m)p/(p − 1)! then on the
interval [0, m]

|f (x)| < mmp−1

(p − 1)!
≤ Ap

(p − 1)!

Let A = mm.
Therefore

max
x∈[0,m]

|f (x)| → 0 as p →∞
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e is transcendental

Let

F (x) =
∞∑

n=0

f (n)(x) where f (x) =
xp−1(x − 1)p · · · (x −m)p

(p − 1)!

Note the sum is finite as the derivatives > mp + p − 1 are zero.
Note

d
dx

(e−xF (x)) = e−x [F ′(x)− F (x)] = −e−x f (x)

Therefore

ajej
∫ j

0
e−x f (x) dx = ajej(−e−xF (x))|j0 = ajej(F (0)− e−jF (j))

Summing over j
m∑

j=0

ajej
∫ j

0
e−x f (x) dx = F (0)

m∑
j=0

ajej −
m∑

j=0

aj

∞∑
i=0

f (i)(j)
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e is transcendental RHS

m∑
j=0

aj

∞∑
i=0

f (i)(j)

is an integer not divisible by p.
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e is transcendental LHS

∣∣∣∣∣∣
m∑

j=0

ajej
∫ j

0
e−x f (x) dx

∣∣∣∣∣∣ < A
∫ m

0
|f (x)|dx → 0
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π is transcendental

Theorem
If α algebraic, then eα is transcendental.

Assuming the theorem: if π algebraic, then so is iπ. But this
implies eiπ = −1 is transcendental.
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Squaring the Circle

Steven F. Bellenot Transcending the Irrationality



Let’s solve a 2000 year question

Corollary
One cannot square the circle.

Otherwise, one could construct
√

π with a straight edge and
compass which would require both

√
π and π to be algebraic.
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Jokes?

A = πr2 No pie’s are round, cakes are square.
π vs e, Which is the better transcendental number?
Well π runs circles around e.
The τ Manifesto. It should be τ = C/r and not π = C/D.

τ = 2π, C = τ r , right angle = quarter of circle = τ/4

Euler’s formula eτ i = 1

To be politically correct:
Transcendental numbers are polynomially challenged.
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