Honors Day 2015 Archimedes Balancing Calculus

Steven F. Bellenot

Department of Mathematics
Florida State University

Honors Day

Florida State University, Tallahassee, FL
April 10, 2015

Historical Time Line

1906 Palimpsest discovered
Rigorous development of Calculus 1815-1897 Weierstrass - unif conv 1789-1857 Cauchy - epsilons ε and deltas δ
Invention of Calculus
1646-1716 Leibniz 1685
1643-1727 Newton 1671/pub 1736
1598-1647 Cavalieri Indivisibles 1627/pub 1635
1229 Palimpsest Erased Christian text overwritten
tenth century Palimpsest Greek copy created
287 BCE-212 BCE Archimedes
325 BCE-265 BCE Euclid

Archimedes and the Method

Fields Medal

Archimedes Grave- Physical Model of stone
 the Method (1955)

The center of gravity

The left hand side of the balance is a cylinder of radius $2 R$ and height $2 R$ with a center of gravity at R to the left of the fulcrum. The cylinder has volume (and with a constant density, weight) of

$$
2 R \pi(2 R)^{2}=8 \pi R^{3} \text { balanced at }-R
$$

Physics says we can treat a big object as a point with the same mass at the center of gravity. The center of gravity of the sphere and the cone are at $2 R$. The weight of the cone is

$$
(1 / 3) 2 R \pi(2 R)^{2}=8 \pi R^{3} / 3
$$

Solid geometry in the balance

$$
\begin{gathered}
R 8 \pi R^{3}=2 R\left(8 \pi R^{3}\right) / 3+2 R V \\
8 \pi R^{3}-\left(8 \pi R^{3}\right)(2 / 3)=2 V \\
\left(8 \pi R^{3}\right)(1 / 3)=2 V \\
\pi R^{3}(4 / 3)=V
\end{gathered}
$$

The volume of the sphere is $2 / 3$ of the circumscribed cylinder. This cylinder has volume ($2 R \pi R^{2}=2 \pi R^{3}$).

Also it works for Surface Area

The area of the sphere is $4 \pi R^{2}$ is the same as the lateral area of the circumscribed cylinder (perimeter $2 \pi R$ times height $2 R$.) Adding the top and bottom circles (each πR^{2}) gives the cylinder area $6 \pi R^{2}$.
The area of the sphere is $2 / 3$ of the circumscribed cylinder.

The same area on cylinder and sphere

The area between h_{0} and h_{1} on the sphere and the cylinder are equal.

The Palimpsest

It had 177 pages, a palimpsest is a document written on recycled parchment.
10th century Byzantine Greek copy of mathematical works partially erased and overwritten with a Christan religious text by 13th century monks. It contains half a dozen works of Archimedes and the only know copy of the method. It also included works of others.
J.L Heiberg, a great scholar of primary sources for classical Greek geometry, recognized a transcript of some of the under text, from only one page, as the work of Archimedes.
The method is also called the method of mechanical theorems

Simple example of the method

We will use the method to show

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

We start by showing the area of the parabola $y=x^{2}$ above $[0,1]$ is $2 / 3$ of the area of the triangle $y=x$ above $[0,1]$

Example part 2

Example part 3

Since the center of gravity of the triangle is at $x=2 / 3$ The area of the parabola $=(2 / 3)$ the area of the triangle $=$ $(2 / 3)(1 / 2)=1 / 3$

Similar Right Triangles

$C A O$ is similar to SAO so hypotenuses are in ratio to short legs

$$
\begin{gathered}
\frac{C A}{O A}=\frac{O A}{S A} \\
O A^{2}=C A * S A
\end{gathered}
$$

The Diagram

Green Sphere, Blue Cone, Red Cylinder, Magenta Plane, Black lever

$$
\begin{aligned}
& M S=A C \text { and } Q S=A S \\
& \begin{aligned}
M S * S Q & =C A * A S \\
& =A O^{2} \text { similar triangles } A O C \sim A O S \\
& =O S^{2}+S Q^{2} \text { Pythagoras } \\
\frac{H A}{A S} & =\frac{C A}{A S} \text { Since } H A=A C \\
& =\frac{M S}{S Q} \\
& =\frac{M S^{2}}{S Q * M S} \text { multiply by } M S \\
& =\frac{M S^{2}}{O S^{2}+S Q^{2}}
\end{aligned}
\end{aligned}
$$

$H A *($ circle in sphere + circle in cone $)=A S *($ circle in cylinder $)$

QED

On the sphere and the cylinder, Book I

Book I has 44 Propositions (9 more in Book 2)
Prop $33 A_{\text {sphere }}=4 \pi R^{2}$
Prop $34 V_{\text {sphere }}=(4 / 3) \pi R^{3}$

To prove $A=B$, an analyst proves both $A \leq B$ and $B \leq A$.
To prove $A \leq B$, an analyst proves $\forall \varepsilon>0, A \leq B+\varepsilon$
To prove $A=B$, an ancient geometer, shows that assuming $A<B$ leads to a contradiction and assuming $B<A$ leads to a contradiction.

Exhaustion

Euclid, Book 10, Proposition 2: The areas of two circles are in the same ratio as the squares of their diameters.

The polygons Exhaust the area of the circles.
The area of similar polygons are in the same ratio as the squares of the diameters of the circle.

Cavalieri and Indivisibles

If two solids are included between a pair of parallel planes and the areas of the two sections cut by them on any place parallel to the including planes are always in a given ratio, then the volumes of the two solids are also in this ratio. The solid is the union of the indivisible sections.

Cavalieri 2

Sphere inside Cylinder

2 Cones

Cavalieri 3

Outer radius $=R$, Inner radius $=\sqrt{R^{2}-h^{2}}$
radius $=h$

Cavalieri 4

Volume of Cylinder $=$ Volume of Sphere +2 * Volume of Cone

$$
\begin{gathered}
(2 R)\left(\pi R^{2}\right)=V+2\left((R)\left(\pi R^{2}\right)(1 / 3)\right) \\
2 \pi R^{3}=V+\left(\pi R^{3}\right)(2 / 3) \\
V=(4 / 3) \pi R^{3}
\end{gathered}
$$

Ballnot $=2$ Pointy little cones.

Calculus I Volume - Disk Method

Rotate $y=\sqrt{R^{2}-x^{2}}$ about the x-axis.

$$
\begin{gathered}
V=2 \int_{0}^{R} \pi y^{2} d x \\
V=2 \pi \int_{0}^{R} R^{2}-x^{2} d x \\
=\left.2 \pi\left(R^{2} x-x^{3} / 3\right)\right|_{0} ^{R} \\
=2 \pi(2 / 3) R^{3}=(4 / 3) \pi R^{3}
\end{gathered}
$$

Calculus II Surface Area

Rotate $y=\sqrt{R^{2}-x^{2}}$ about the x-axis.

$$
\begin{gathered}
y^{\prime}=\frac{-x}{\sqrt{R^{2}-x^{2}}} \\
1+y^{\prime 2}=\frac{R^{2}}{R^{2}-x^{2}} \\
A=2 \int_{0}^{R} 2 \pi y \sqrt{1+y^{\prime 2}} d x \\
A=4 \pi \int_{0}^{R} R d x=\left.4 \pi R x\right|_{0} ^{R}=4 \pi R^{2}
\end{gathered}
$$

Calculus III Volume via spherical co-ordinates

$$
\begin{aligned}
V & =8 \int_{0}^{R} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \rho^{2} \sin \phi d \phi d \theta d \rho \\
& =8 \int_{0}^{R} \rho^{2} d \rho \int_{0}^{\pi / 2} d \theta \int_{0}^{\pi / 2} \sin \phi d \phi \\
& =8\left(R^{3} / 3\right)(\pi / 2)(-\cos (\pi / 2)+\cos (0))=(4 / 3) \pi R^{3}
\end{aligned}
$$

Eureka!

The Series $\sum_{1}^{\infty} 4^{-n}=1 / 3$

Jokes?

- What is an Archimedes Screw? The lack of credit he got for integration?
- Eureka! Archimedes replied Buoyantly.
- Last words? Do not disturb my circles.
- Jacob Bernoulli's Gravestone, the wrong spiral.

