# Honors Day 2016 $V-E+F=2$ 

Steven F. Bellenot

Department of Mathematics
Florida State University

Honors Day<br>Florida State University, Tallahassee, FL April 8, 2016

## November 14, 1750

In a letter to Goldbach, Euler names edges:
"the junctures where two faces come together along their sides, which for lack of an accepted term, I call edges."
The $E$ in the formula $V-E-F=2$.

Not the first e, Euler also is responible for $e$, the base of the natural log and the beautiful formula

$$
e^{i \pi}=-1
$$

## Polyhedra Definitions

- Polygon has sides and plane angles and corners.
- An edge is shared by two polygon sides and has a dihedra angle.
- Vertices have a solid angle and is shared by three or more corners.
- Either a solid or a manifold condition.


## Timeline

c 570BC Pythagoras - Dodecahedron
417-369BC Theatetus - the five regular solids Icosahedron, Octohedron.
428-347BC Plato The five Platonic solids.
c 300BC Euclid Elements - final book.
287-212BC Archimedes: Archimedean solids 13 polyhedra in lost work
1596-1650 Descartes
1751 Euler
1794 Legendre
1811 Cauchy
1813 Linuiler - examples that fail
1847 Listing introducted the word Topology
1854-1912 Poincare Analysis Situs
1875-1941 Lebesgue
1905 Sommerville discovers \# 14
1912 Hausdroff First Topology Textbook

## Euler's Polyhedra Formula

A convex polyhedron with $V$ vertices, $E$ edges and $F$ faces satisfies $V-E+F=2$.

A connected planar graph with $V$ vertices, $E$ edges and $F$ faces satisfies $V-E+F=2$. (The unbounded region counts as a face.)

## The five regular solids

(3,3) Tetrahedron $V=4, E=6, F=4$
$(4,3)$ Cube $V=8, E=12, F=6$
$(5,3)$ Dodecahedron $V=20, E=30, F=12$
$(3,4)$ Octahedron $V=6, E=12, F=8$
$(3,5)$ Icosahedron $V=12, E=30, F=20$


## Cube: $V=8, E=12, F=6$



Cube 3D


Flattened cube


Graph Theory Cube

A graph is a tree $\Longleftrightarrow$ it is connected and acyclic.
Every connected graph $G$ contains a spanning tree $T$, a subgraph which is a tree and $V_{G}=V_{T}$ (the definition of $T$ spans $G$ ).

Tree $V=n, E=n-1, F=1$


Induction: remove a leaf, decreases both $V$ and $E$ by one.

## Duality

Polyhedra, pick vertices in the middle of faces, convex hull.
Graph theory. pick vertices in faces, connect adjacent faces. The resulting faces contain the orginal vertices.

## Duality



## Staudt's proof 1847

Let $T$ be a spanning tree and $S$ the dual tree of the planar graph $G$

$$
\begin{aligned}
V_{T}-E_{T} & =1 \\
V_{S}-E_{S} & =1 \\
V_{G}-E_{G}+F_{G} & =2
\end{aligned}
$$

Since $E_{G}=E_{T}+E_{S}, F_{G}=V_{S}$ and $F_{G}=V_{S}$

## Area of bi-gon, $n=2$

Bigon, two sided spherical geodesic polygon


The area is the fraction of the hemi-sphere $=\frac{\alpha}{\pi} 2 \pi$ or

$$
\text { Area }=2 \alpha=\alpha+\alpha-(n-2) \pi
$$

## Geodesic Spherical Triangle



## Area of triangle, $n=3$



## Area of triangle, $n=3$

$$
\begin{aligned}
& T+A_{1}+A_{2}=2 \alpha \\
& B_{1}+B_{2}=2 \beta-T \\
& C_{1}+C_{2}=2 \gamma-T \\
& 2 \pi=2(\alpha+\beta+\gamma-T) \\
& T=\alpha+\beta+\gamma-(n-2) \pi
\end{aligned}
$$

## Area of $n$-gon

$$
\text { Area }=T_{1}+T_{2}=\alpha+\beta+\gamma+\delta-(n-2) \pi
$$



$$
\begin{aligned}
& T_{1}=\alpha_{1}+\beta+\gamma_{1}-\pi \\
& T_{2}=\gamma_{2}+\delta+\alpha_{2}-\pi
\end{aligned}
$$

Area $=\alpha+\beta+\gamma+\delta-2 \pi$

## Legendre's proof

Area of Sphere $=\sum_{F}$ Area of $F$

$$
4 \pi=\sum_{F}\left(\sum_{\text {angles }} \alpha-\left(n_{F}-2\right) \pi\right)
$$

$$
4 \pi=\sum_{V}\left(\sum_{\text {angles }} \alpha\right)-\pi \sum_{F} n_{F}+2|F| \pi
$$

$$
4 \pi=|V| 2 \pi-\pi 2|E|+2|F| \pi
$$

$$
2=|V|-|E|+|F|
$$

## Results, a quote and a joke

- The average degree of a planar graph is strictly less than six.
- Soccer ball like polyhedra have exactly 12 pentagons.
- Mathematics is the art of giving the same name to different things - Poincare.
- Without Geometry, life is pointless.

