Fall 2012 Welcome

Steven F. Bellenot

Department of Mathematics
Florida State University

Fall 2012
Florida State University, Tallahassee, FL
Aug 24, 2012

Social Networks

Food Web Networks

Convex Polyhedra

A convex polyhedra is the convex hull of a finite set of points in \mathbb{R}^{n}.
$(0,4)$ but not $(1,1)$ nor $(3,1))$ and Network edges are extreme
line segments between vertices (i.e [(2, 2), (0, 4)] but not
$[(0,0),(2,2)])$. Two vertices are friends if they are joined by an edge.

Convex Polyhedra

A convex polyhedra is the convex hull of a finite set of points in \mathbb{R}^{n}. Network vertices are the extreme points (i.e. $(2,2)$ and $(0,4)$ but not $(1,1)$ nor $(3,1))$ and Network edges are extreme line segments between vertices $(i . e[(2,2),(0,4)]$ but not
$[(0,0),(2,2)])$. Two vertices are friends if they are joined by an edge.

Convex Polyhedra

A convex polyhedra is the convex hull of a finite set of points in \mathbb{R}^{n}. Network vertices are the extreme points (i.e. $(2,2)$ and $(0,4)$ but not $(1,1)$ nor $(3,1))$ and Network edges are extreme line segments between vertices (i.e [(2, 2), (0, 4)] but not $[(0,0),(2,2)])$. Two vertices are friends if they are joined by an

Convex Polyhedra

A convex polyhedra is the convex hull of a finite set of points in \mathbb{R}^{n}. Network vertices are the extreme points (i.e. $(2,2)$ and $(0,4)$ but not $(1,1)$ nor $(3,1))$ and Network edges are extreme line segments between vertices (i.e [(2, 2), (0, 4)] but not $[(0,0),(2,2)])$. Two vertices are friends if they are joined by an edge.

Clicks

A click is a set of vertices, every pair of which are friends.
K_{1} ○
K_{2}

K_{3}

K_{4}

OR

Max Convex Click Size in 2-Dimenisions is 3

Suppose this collection of points is a max convex click

Max Convex Click Size in 2-Dimenisions is 3

Find the leftmost point

Max Convex Click Size in 2-Dimenisions is 3

Find the next point clockwise

Max Convex Click Size in 2-Dimenisions is 3

Find the next point counterclockwise

Max Convex Click Size in 2-Dimenisions is 3

Now look at the remaining points

Max Convex Click Size in 2-Dimenisions is 3

They are not extremal, so max is 3 .

Max Convex Click Size in 1 -Dimenision is 2

Only two vertices, leftmost and rightmost.

Max Convex Click Size in 3-Dimenision is 4

Maximal Convex Clicks Size in Dimension n

Dimension	Max Convex Click
0	1
1	2
2	3
3	4
4	$?$

Advisors (other than Josh) are not your friend

- Do not reply to email from students wanting to add your class just forward them to advisor@math.fsu.edu

Advisors (other than Josh) are not your friend

- Do not reply to email from students wanting to add your class just forward them to advisor@math.fsu.edu

Student Email is not your friend

- You don't have to answer email.
- But it is better to answer "See me in my office" or "Read the web page" a day or two later.

Student Email is not your friend

- You don't have to answer email.
- But it is better to answer "See me in my office" or "Read the web page" a day or two later.

A random email to an advisors result

The advisor filled out a form. A chair of another department
approved the form.International programs created a shadow course. The professor at the end of the semester discovers he is listed as the instructor of a course out of the blue. Eventually, the student shows up with a collection of math assignments and tests in a foreign language to evaluate. The professor signed nothing, he could have let the F sit.

A random email to an advisors result

The advisor filled out a form.A chair of another department approved the form. International programs created a shadow course. The professor at the end of the semester discovers he is listed as the instructor of a course out of the blue. Eventually, the student shows up with a collection of math assignments and tests in a foreign language to evaluate. The professor signed nothing, he could have let the F sit.

A random email to an advisors result

The advisor filled out a form. A chair of another department approved the form. International programs created a shadow course. The professor at the end of the semester discovers he is listed as the instructor of a course out of the blue. Eventually, the student shows up with a collection of math assignments and tests in a foreign language to evaluate. The professor signed nothing, he could have let the F sit.

A random email to an advisors result

The advisor filled out a form. A chair of another department approved the form. International programs created a shadow course. The professor at the end of the semester discovers he is listed as the instructor of a course out of the blue.
> the student shows up with a collection of math assignments and tests in a foreign language to evaluate. The professor
> signed nothing, he could have let the F sit.

A random email to an advisors result

The advisor filled out a form. A chair of another department approved the form. International programs created a shadow course. The professor at the end of the semester discovers he is listed as the instructor of a course out of the blue. Eventually, the student shows up with a collection of math assignments and tests in a foreign language to evaluate.
signed nothing, he could have let the F sit.

A random email to an advisors result

The advisor filled out a form.A chair of another department approved the form. International programs created a shadow course. The professor at the end of the semester discovers he is listed as the instructor of a course out of the blue. Eventually, the student shows up with a collection of math assignments and tests in a foreign language to evaluate. The professor signed nothing, he could have let the F sit.

Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused absence.

Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused absence.

Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused

Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused absence.

Maximal Convex Clicks Size in Dimension n

Dimension	Max Convex Click
0	1
1	2
2	3
3	4
4	∞

In 4-dimensions there is no max click size

Pick distinct $t_{i}, 1 \leq i \leq n$.

Note $f\left(t_{3}\right)=f\left(t_{5}\right)=0<f\left(t_{i}\right)$ for $3 \neq i \neq 5$.
Note P_{i} dot product $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=f\left(t_{i}\right)-a_{0}$
We have found a linear functional the exposes the edge from
P_{3} to P_{5}.

In 4-dimensions there is no max click size

Pick distinct $t_{i}, 1 \leq i \leq n$.
The points $P_{i}=\left(t_{i}, t_{i}^{2}, t_{i}^{3}, t_{i}^{4}\right), 1 \leq i \leq n$ form a convex click.

Note $f\left(t_{3}\right)=f\left(t_{5}\right)=0<f\left(t_{i}\right)$ for $3 \neq i \neq 5$.
Note P_{i} dot product $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=f\left(t_{i}\right)-a_{0}$
We have found a linear functional the exposes the edge from

In 4-dimensions there is no max click size

Pick distinct $t_{i}, 1 \leq i \leq n$.
The points $P_{i}=\left(t_{i}, t_{i}^{2}, t_{i}^{3}, t_{i}^{4}\right), 1 \leq i \leq n$ form a convex click.

$$
f(t)=\left(t-t_{3}\right)^{2}\left(t-t_{5}\right)^{2}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}
$$

Note $f\left(t_{3}\right)=f\left(t_{5}\right)=0<f\left(t_{i}\right)$ for $3 \neq i \neq 5$.
Note P_{i} dot product $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=f\left(t_{i}\right)-a_{0}$
We have found a linear functional the exposes the edge from

In 4-dimensions there is no max click size

Pick distinct $t_{i}, 1 \leq i \leq n$.
The points $P_{i}=\left(t_{i}, t_{i}^{2}, t_{i}^{3}, t_{i}^{4}\right), 1 \leq i \leq n$ form a convex click.

$$
f(t)=\left(t-t_{3}\right)^{2}\left(t-t_{5}\right)^{2}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}
$$

Note $f\left(t_{3}\right)=f\left(t_{5}\right)=0<f\left(t_{i}\right)$ for $3 \neq i \neq 5$.
Note P_{i} dot product $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=f\left(t_{i}\right)-a_{0}$
We have found a linear functional the exposes the edge from

In 4-dimensions there is no max click size

Pick distinct $t_{i}, 1 \leq i \leq n$.
The points $P_{i}=\left(t_{i}, t_{i}^{2}, t_{i}^{3}, t_{i}^{4}\right), 1 \leq i \leq n$ form a convex click.

$$
f(t)=\left(t-t_{3}\right)^{2}\left(t-t_{5}\right)^{2}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}
$$

Note $f\left(t_{3}\right)=f\left(t_{5}\right)=0<f\left(t_{i}\right)$ for $3 \neq i \neq 5$.
Note P_{i} dot product $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=f\left(t_{i}\right)-a_{0}$
We have found a linear functional the exposes the edge from

In 4-dimensions there is no max click size

Pick distinct $t_{i}, 1 \leq i \leq n$.
The points $P_{i}=\left(t_{i}, t_{i}^{2}, t_{i}^{3}, t_{i}^{4}\right), 1 \leq i \leq n$ form a convex click.

$$
f(t)=\left(t-t_{3}\right)^{2}\left(t-t_{5}\right)^{2}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}
$$

Note $f\left(t_{3}\right)=f\left(t_{5}\right)=0<f\left(t_{i}\right)$ for $3 \neq i \neq 5$.
Note P_{i} dot product $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=f\left(t_{i}\right)-a_{0}$
We have found a linear functional the exposes the edge from P_{3} to P_{5}.

