Fall 2014 Welcome

Steven F. Bellenot

Department of Mathematics
Florida State University
Fall 2014
Florida State University, Tallahassee, FL
Aug 22, 2014

Jacques Hadamard (1902) Well-Posed Problems

GHamamars

Talking Points

Grade Distributions

Email

Accommodations

Jacques Hadamard 1902 notion of a well-posed problem

Context: Solutions to a PDE modeling a physical process.
(1) The equation has a solution
(2) The solution is unique
(0) The solutions's behavior changes continuously with the initial conditions.

If it is not well-posed, it is ill-posed. It can be well-posed but be ill-conditioned (small changes in initial conditional have much bigger changes in solutions).

Existence and Email

Advisors (other than Pamela) are not your friend

- Do not reply to email from students wanting to add your class, just forward them to advisor@math.fsu.edu

Existence and Email

Advisors (other than Pamela) are not your friend

- Do not reply to email from students wanting to add your class, just forward them to advisor@math.fsu.edu

Uniqueness and Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused absence.

Uniqueness and Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused absence.

Uniqueness and Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused

Uniqueness and Accommodations

- The letter isn't the request. It is a basis for discussion.
- Unlimited Excused Absences. One extra excused absence.

Continuity and Grade Distributions

http://www.maa.org/CSPCC

Final Grades

Figure 1: Instructor reported final grades.

An ill-posed problem, the backwards heat equation

Let $u(x, t)$ be a solution to $u_{x x}=u_{t}, u(x, 0)=0$ and look at $u(x,-1)$, this is not continuous with respect to the initial condition.
Alternately, look at forward solutions $(t>0)$ to $u_{x x}=-u_{t}$ with $u(x, 0)=0$ and look at $u(x, 1)$

An ill-posed problem

$$
u(x, t)=\varepsilon \sin (n x) \exp \left(-n^{2} t\right)
$$

solves $u_{x x}=u_{t}$ and has sup $|u(x, 0)| \leq \varepsilon$. But for $t=-1$

$$
|u(x,-1)|=\varepsilon|\sin (n x)| \exp \left(n^{2}\right) \sim \varepsilon \exp \left(n^{2}\right) \rightarrow \infty
$$

An ill-posed problem

Finally

You have a lot of support, if you need help, ask. You are the math department.

