Something for nothing

Or how to reconstruct a function from its zeros

Steven Bellenot

Mathematics Florida State University bellenot@math.fsu.edu

http://www.math.fsu.edu/~ bellenot/talks/maa02.04/

> MAA/FTYCMA joint meeting University of Central Florida, Orlando Feb 20, 2004

The Principle (naive version)

If f and g have the same zero's, then f / g is constant.

Multiplicities: require $\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \neq 0$ at each zero c so that $\frac{f}{g}$ is continuous and never zero.

Singlarity problems: $f(x) /\left(1+x^{2}\right)$.

- Growth problems: $e^{x} f(x)$.

Non-naive form for entire functions, Hadamard 1893, but dates to at least Euler 1735.

- cases: polys, sin, gamma, and zeta.

Guess the polynomial

- $p(x)$ has degree $2 a x^{2}+b x+c$
and $p(2)=0 \quad(x-2)(p x+q)$
and $p(-1)=0$
$k(x+1)(x-2)$
and $p(0)=6 \quad-3(x-2)(x+1)$
$p(x)=6\left(1-\frac{x}{-1}\right)\left(1-\frac{x}{2}\right)$

Knowing nothing is almost everything

$c_{1}, c_{2}, \ldots c_{n}$ are the zeros of a polynomial $p(x)$, and $x=0$ is not a zero, then $p(x)=p(0)\left(1-\frac{x}{c_{1}}\right)\left(1-\frac{x}{c_{2}}\right) \cdots\left(1-\frac{x}{c_{n}}\right)$.

If polynomial $q(0)=0$, and 0 is a root k times, then $p(x)=q(x) / x^{k}$ is non-zero at 0 and

$$
\begin{aligned}
& \text { - } q(x)=x^{k} p(0)\left(1-\frac{x}{c_{1}}\right)\left(1-\frac{x}{c_{2}}\right) \cdots\left(1-\frac{x}{c_{n}}\right) \\
& p(x)=p(0) \prod\left(1-\frac{x}{c_{i}}\right)
\end{aligned}
$$

The Greatest Unsolved Problem:

 the Riemann Hypothesis

The popular press has declared the Riemann Hypothesis the greatest unsolved problem in mathematics.

RH: ζ zeros all on the critical line

$$
\psi(x)=x+\sum_{\rho} \frac{x^{\rho}}{\rho}+\sum_{n} \frac{x^{-2 n}}{2 n}+\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

$$
\psi(x)=\sum_{p^{n} \leq x} \ln p ; \quad\left|x^{s+\sigma i}\right|=\left|x^{s}\right|\left|e^{i \sigma \ln x}\right|=\left|x^{s}\right|
$$

Walking the critical line

As p runs over primes and ρ runs over non-trivial zero's of ζ.

$$
\begin{gathered}
\zeta(s)=g(s) \prod_{\rho}\left(1-\frac{s}{\rho}\right) \\
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{gathered}
$$

The Basel Problem

$$
\sum_{n} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=?
$$

It is almost

$$
\begin{aligned}
\sum_{n} \frac{1}{n(n+1)} & =\sum_{n}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots=1
\end{aligned}
$$

Solved by Euler in 1735. Famous problem popularized by Jakob Bernoulli 1689 but dates from before.

$\zeta(2)$ converges

$$
\begin{aligned}
\frac{1}{n(n+1)} & \leq \frac{1}{n^{2}} \leq \frac{1}{(n-1) n} \\
\sum \frac{1}{n(n+1)} & \leq \sum \frac{1}{n^{2}} \leq 1+\sum \frac{1}{n(n+1)} \\
1 & \leq \sum \frac{1}{n^{2}} \leq 2
\end{aligned}
$$

Euler had a better estimates - in fact he showed

$$
\sum \frac{1}{n^{2}}=\sum \frac{1}{2^{n} n^{2}}+(\log 2)^{2}
$$

Lets make sin a honorary polynomial

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x}{x} & =1 \quad \text { zero is a single root } \\
\frac{\sin (\pi x)}{\pi x} & =0 \quad \text { for } \quad x= \pm 1, \pm 2, \pm 3 \ldots \\
\sin (\pi x) & =\pi x \prod\left(1-\frac{x^{2}}{n^{2}}\right) \\
1-\frac{x^{2}}{n^{2}} & =\left(1-\frac{x}{n}\right)\left(1-\frac{x}{-n}\right)
\end{aligned}
$$

Series for the product

$$
\begin{aligned}
\prod= & \left(1-\frac{x^{2}}{1^{2}}\right)\left(1-\frac{x^{2}}{2^{2}}\right)\left(1-\frac{x^{2}}{3^{2}}\right)\left(1-\frac{x^{2}}{4^{2}}\right) \cdots \\
= & 1-x^{2}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right) \\
& +x^{4}\left(\frac{1}{1^{2}}\left(\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right)\right. \\
& +\frac{1}{2^{2}}\left(\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right) \\
& \left.+\frac{1}{3^{2}}\left(\frac{1}{4^{2}}+\cdots\right)+\cdots\right)+\cdots
\end{aligned}
$$

Basel solved, coefficents of x^{3}

$$
\begin{aligned}
\sin \pi x & =\pi x \prod\left(1-\frac{x^{2}}{n^{2}}\right) \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \\
\sin \pi x & =\pi x-\frac{\pi^{3} x^{3}}{3!}+\frac{\pi^{5} x^{5}}{5!}-\cdots \\
-\frac{\pi^{3}}{3!} & =-\pi \sum_{n} \frac{1}{n^{2}} \\
\text { so } \quad \sum_{n} \frac{1}{n^{2}} & =\frac{\pi^{2}}{6}
\end{aligned}
$$

Bernoulli's Objections

Infinite products?
What about complex zeros of $\sin \pi x$?
What about $e^{x} \sin (\pi x)$? (Has the same zeros)

Euler 1735 thought this was a wonderful technic and as good as any other solution. So did Riemann 1859. Hadamard actually proved the technic in 1893.

Infinite products

$\prod_{n=1}^{N}\left(1-a_{n}\right)$ converges \Longleftrightarrow its \log converges.

The tangent approx $\log (1-x) \approx-x$.
$\sum_{n=1}^{N} \log \left(1-a_{n}\right) \quad$ converges
$\sum_{n=1}^{N} a_{n}$ converges

- So the RHS, $\pi x \prod\left(1-\frac{x^{2}}{n^{2}}\right)$ converges since $\sum \frac{x^{2}}{n^{2}}$ converges. But does it converge to $\sin (\pi x)$?
- $\log \zeta(s)$ can be similarly written as function of its zeros.

Zero hocus pocus I

$\sin x$ has zeros at $n \pi, \sin (x-\pi / 2)$ has zeros at $n \pi / 2$ for odd n, so $\sin x \cos x$ has zeros at $n \pi / 2$.
But $\sin 2 x$ has zeros at $n \pi / 2$ so if you could use the zero's to determine a
function, then $\sin 2 x=k \sin x \cos x$ some constant k.
But this is TRUE. It is the double angle formula $\sin 2 x=2 \sin x \cos x$.

Translation

$$
g_{N}(x)=\pi x \prod_{n=-N}^{N}\left(1-\frac{x}{n}\right)
$$

Compare factors of $g_{N}(x)$ and $g_{N}(x+1)$. The two red balls don't match but the others line up with ($1-\frac{x}{n-1}$) and ($1-\frac{x+1}{n}$) having a zero at $n-1$ and ratio $\frac{n}{n-1}$ which exactly cancels the ratio at $-n$. Fix x and let $N \gg|x|$, then the two red factors are ≈ 1 at x. Thus $g(x)=\lim g_{N}(x)$ has period 1

$$
g(x)=g(x+1)
$$

Dilation

$$
g_{2 N}(2 x)=2 \pi x \prod_{n=-2 N}^{2 N}\left(1-\frac{2 x}{n}\right)
$$

Separate the product into even and odd n we almost get $2 g_{N}(x) g_{N}\left(x+\frac{1}{2}\right)$ missing only by the red ball. When $N \gg|x|$, red factor ≈ 1 as before, thus $g(x)=\lim g_{N}(x)$ satisfies the fun eqn

$$
g(2 x)=2 g(x) g\left(x+\frac{1}{2}\right)
$$

Zero hocus pocus II

Let $g(x)=x e^{\gamma x} \prod e^{-x / n}(1+x / n)$. Note $g(x)$ has zeros at $0,-1,-2, \cdots$ and

$$
g(1)=1
$$

Note $x g(x+1)$ also has the same set of zeros and the same value at $x=1$, then

$$
x g(x+1)=g(x)
$$

Since $g(x)$ is zero at $0,-1,-2, \cdots$, then

$$
\begin{gathered}
g(1-x) \text { is zero at } 1,2,3, \cdots \text {, then } \\
g(x) g(1-x)=k \sin (\pi x)
\end{gathered}
$$

$\Gamma(x)=1 / g(x)$, these formula translate to $\Gamma(x+1)=x \Gamma(x)$ so that $\Gamma(n+1)=n$! and $\Gamma(x) \Gamma(1-x)=\pi / \sin (\pi x)$

Cot and the Herglotz Trick

$\pi \cot \pi x=\frac{1}{x}+\sum_{n}\left(\frac{1}{x+n}+\frac{1}{x-n}\right) x \notin Z$

Let $f(x)$ be rhs, and let

$$
g(x)=\lim _{N} \sum_{n=-N}^{N} \frac{1}{x+n}
$$

Claim both f and g are (i) continuous off Z; (ii) have period 1 ; (iii) odd and (iv) satisfy the functional equation

$$
F\left(\frac{x}{2}\right)+F\left(\frac{x+1}{2}\right)=2 F(x)
$$

Let $h(x)=f(x)-g(x)$. Extend $h(n)=0$, then h is continuous, odd, periodic and satisfies the functional equation. It follows that h is identically zero.

Let M be the maximum value of h and suppose c is so that $h(c)=M$. Both $h\left(\frac{c}{2}\right), h\left(\frac{c+1}{2}\right) \leq M$ and the fun eqn says their average is M, so $h\left(\frac{c}{2}\right)=M$. Iterating $0=\lim _{n} h\left(\frac{c}{2^{n}}\right)=M$.

