
Something for nothing

Or how to reconstruct a function from
its zeros

Steven Bellenot
Mathematics Florida State University

bellenot@math.fsu.edu

http://www.math.fsu.edu/˜bellenot/talks/maa02.04/

MAA/FTYCMA joint meeting
University of Central Florida, Orlando

Feb 20, 2004



The Principle (naive version)

If f and g have the same zero’s,
then f/g is constant.

• Multiplicities: require limx→c
f(x)
g(x) 6= 0 at

each zero c so that f
g is continuous and

never zero.

• Singlarity problems: f(x)/(1 + x2).

• Growth problems: exf(x).

• Non-naive form for entire functions,
Hadamard 1893, but dates to at least
Euler 1735.

• cases: polys, sin, gamma, and zeta.



Guess the polynomial

• p(x) has degree 2 ax2 + bx+ c

• and p(2) = 0 (x− 2)(px+ q)

• and p(−1) = 0 k(x+ 1)(x− 2)

• and p(0) = 6 −3(x− 2)(x+ 1)

• p(x) = 6(1− x
−1)(1−

x
2)



Knowing nothing is almost
everything

• c1, c2, . . . cn are the zeros of a polynomial
p(x), and x = 0 is not a zero, then

• p(x) = p(0)(1− x
c1

)(1− x
c2

) · · · (1− x
cn

).

• If polynomial q(0) = 0, and 0 is a root k
times, then p(x) = q(x)/xk is non-zero
at 0 and

• q(x) = xkp(0)(1− x
c1

)(1− x
c2

) · · · (1− x
cn

)

• p(x) = p(0)
∏

(1− x
ci

).



The Greatest Unsolved Problem:
the Riemann Hypothesis

The popular press has declared the
Riemann Hypothesis the greatest
unsolved problem in mathematics.



RH: ζ zeros all on the critical line

ψ(x) = x+
∑
ρ

xρ

ρ
+
∑
n

x−2n

2n
+
ζ ′(0)
ζ(0)

ψ(x) =
∑
pn≤x

ln p; |xs+σi| = |xs||eiσ lnx| = |xs|



Walking the critical line

As p runs over primes and ρ runs over
non-trivial zero’s of ζ.

ζ(s) = g(s)
∏
ρ

(1− s

ρ
)

ζ(s) =
∑
n

1
ns

=
∏
p

(1− 1
ps

)−1



The Basel Problem

∑
n

1
n2 = 1 +

1
22 +

1
32 + · · · = ?

It is almost∑
n

1
n(n+ 1)

=
∑
n

(
1
n
− 1
n+ 1

)

= (1− 1
2
) + (

1
2
− 1

3
) + · · · = 1

Solved by Euler in 1735. Famous
problem popularized by Jakob Bernoulli
1689 but dates from before.



ζ(2) converges

1
n(n+ 1)

≤ 1
n2 ≤

1
(n− 1)n∑ 1

n(n+ 1)
≤
∑ 1

n2 ≤ 1 +
∑ 1

n(n+ 1)

1 ≤
∑ 1

n2 ≤ 2

Euler had a better estimates — in fact
he showed∑ 1

n2 =
∑ 1

2nn2 + (log 2)2



Lets make sin a honorary
polynomial

lim
x→0

sinx
x

= 1 zero is a single root

sin(πx)
πx

= 0 for x = ±1,±2,±3 . . .

sin(πx)= πx
∏

(1− x
2

n2)

1− x
2

n2 = (1− x
n

)(1− x

−n
)



Series for the product

∏
= (1− x

2

12)(1− x
2

22)(1− x
2

32)(1− x
2

42) · · ·

= 1− x2(
1
12 +

1
22 +

1
32 +

1
42 + · · · )

+ x4( 1
12(

1
22 +

1
32 +

1
42 + · · · )

+
1
22(

1
32 +

1
42 + · · · )

+
1
32(

1
42 + · · · ) + · · ·

)
+ · · ·



Basel solved, coefficents of x3

sinπx = πx
∏

(1− x
2

n2)

sinx = x− x
3

3!
+
x5

5!
− · · ·

sinπx = πx− π
3x3

3!
+
π5x5

5!
− · · ·

−π
3

3!
= −π

∑
n

1
n2

so
∑
n

1
n2 =

π2

6



Bernoulli’s Objections

• Infinite products?

• What about complex zeros of sinπx?

• What about ex sin(πx)? (Has the same
zeros)

• Euler 1735 thought this was a
wonderful technic and as good as any
other solution. So did Riemann 1859.
Hadamard actually proved the technic
in 1893.



Infinite products

•
∏N

n=1(1 − an) converges ⇐⇒ its log
converges.

• The tangent approx log(1− x) ≈ −x.

•
∑N

n=1 log(1 − an) converges ⇐⇒∑N
n=1 an converges

• So the RHS, πx
∏

(1 − x2

n2) converges

since
∑

x2

n2 converges. But does it
converge to sin(πx)?

• log ζ(s) can be similarly written as
function of its zeros.



Zero hocus pocus I
sinx has zeros at nπ, sin(x− π/2) has
zeros at nπ/2 for odd n, so sinx cosx

has zeros at nπ/2.
But sin 2x has zeros at nπ/2 so if you
could use the zero’s to determine a

function, then sin 2x = k sinx cosx some
constant k.

But this is TRUE. It is the double angle
formula sin 2x = 2 sinx cosx.



Translation

gN(x) = πx

N∏
n=−N

(1− x
n

)

N−N

Compare factors of gN(x) and gN(x+ 1).
The two red balls don’t match but the
others line up with (1− x

n−1) and
(1− x+1

n ) having a zero at n− 1 and
ratio n

n−1 which exactly cancels the ratio
at −n. Fix x and let N � |x|, then the
two red factors are ≈ 1 at x. Thus
g(x) = lim gN(x) has period 1

g(x) = g(x+ 1)



Dilation

g2N(2x) = 2πx
2N∏

n=−2N

(1− 2x
n

)

N−N

Separate the product into even and odd
n we almost get 2gN(x)gN(x+ 1

2) missing
only by the red ball. When N � |x|, red
factor ≈ 1 as before, thus
g(x) = lim gN(x) satisfies the fun eqn

g(2x) = 2g(x)g(x+
1
2
)



Zero hocus pocus II
Let g(x) = xeγx

∏
e−x/n(1 + x/n). Note

g(x) has zeros at 0,−1,−2, · · · and
g(1) = 1

Note xg(x+ 1) also has the same set of
zeros and the same value at x = 1, then

xg(x+ 1) = g(x)
Since g(x) is zero at 0,−1,−2, · · · , then

g(1− x) is zero at 1, 2, 3, · · · , then
g(x)g(1− x) = k sin(πx)

Γ(x) = 1/g(x), these formula translate
to Γ(x+ 1) = xΓ(x) so that Γ(n+ 1) = n!

and Γ(x)Γ(1− x) = π/ sin(πx)



Cot and the Herglotz Trick

π cotπx =
1
x

+
∑
n

(
1

x+ n
+

1
x− n

) x 6∈ Z

Let f(x) be rhs, and let

g(x) = lim
N

N∑
n=−N

1
x+ n

Claim both f and g are (i) continuous
off Z; (ii) have period 1; (iii) odd and
(iv) satisfy the functional equation

F (
x

2
) + F (

x+ 1
2

) = 2F (x)



Let h(x) = f(x)− g(x). Extend h(n) = 0,
then h is continuous, odd, periodic and
satisfies the functional equation. It
follows that h is identically zero.

M

C/2 C (C+1)/2

Let M be the maximum value of h and
suppose c is so that h(c) = M . Both
h(c2), h(c+1

2 ) ≤M and the fun eqn says
their average is M , so h(c2) = M .
Iterating 0 = limn h( c

2n) = M .


