Joys and virtues of obsolete technologies

Steven F. Bellenot
Department of Mathematics
Florida State University

Math Tech, Valdosta State University, Valdosta, GA, Feb 23, 2007

Obsolete

Definition:
(1) No longer produced; out of date.
(2) Biology Less developed (formly or related species); rudimentary; vestigial.

- I just bought a computer and now it is obsolete.
- The dinosaurs disappeared from the historical record.
- This antique is valuable because they stopped making them.
- Vestigial organs like the appendix.

Obsolete

Definition:
(1) No longer produced; out of date.
(2) Biology Less developed (formly or related species); rudimentary; vestigial.

- I just bought a computer and now it is obsolete.
- The dinosaurs disappeared from the historical record.
- This antique is valuable because they stopped making them.
- Vestigial organs like the appendix.

Obsolete

Definition:
(1) No longer produced; out of date.
(2) Biology Less developed (formly or related species); rudimentary; vestigial.

- I just bought a computer and now it is obsolete.
- The dinosaurs disappeared from the historical record.
- This antique is valuable because they stopped making them.
- Vestigial organs like the appendix.

Obsolete

Definition:
(1) No longer produced; out of date.
(2) Biology Less developed (formly or related species); rudimentary; vestigial.

- I just bought a computer and now it is obsolete.
- The dinosaurs disappeared from the historical record.
- This antique is valuable because they stopped making them.
- Vestigial organs like the appendix.

Obsolete

Definition:
(1) No longer produced; out of date.
(2) Biology Less developed (formly or related species); rudimentary; vestigial.

- I just bought a computer and now it is obsolete.
- The dinosaurs disappeared from the historical record.
- This antique is valuable because they stopped making them.
- Vestigial organs like the appendix.

Which is larger?

Which of e^{π} or π^{e} is larger?

Found as the problem of math riddles book in the 1960's Perhaps a Math Puzzle book by Martin Gardner Perhaps The Unexpected Hanging and Other Mathematical Diversions 1969.

Which is larger?

Which of e^{π} or π^{e} is larger?

Found as the problem of math riddles book in the 1960's
Perhaps a Math Puzzle book by Martin Gardner Perhaps The Unexpected Hanging and Other Mathematical Diversions 1969.

Which is larger?

Which of e^{π} or π^{e} is larger?
Found as the problem of math riddles book in the 1960's Perhaps a Math Puzzle book by Martin Gardner
Perhaps The Unexpected Hanging and Other Mathematical Diversions 1969.

Which is larger?

Which of e^{π} or π^{e} is larger?
Found as the problem of math riddles book in the 1960's Perhaps a Math Puzzle book by Martin Gardner Perhaps The Unexpected Hanging and Other Mathematical Diversions 1969.

Log-Log Duplex Deci-Trig

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Slide Rule

- invented by Oughtred in 1622 just a few years after logarithms.
- Mannheim (1851) Modern slide rule with A, B, C and D scales.
- Made the trip to the moon with Apollo.
- essentually disappeared in 1970's when all the slide rule manufactors silently quit, perhaps in response to the HP 35.
- now a collectors item.
- variations in size, circular, with microscope.
- Over 40 million produced.

Virtues of the Slide Rule

- Scientific notation, estimation, no batteries required.
- Develops analog reading abilities. (Gauges, dials)
- Parallel computing.
- Wonderfull applicaton of Logs. Intermediate value theorem.
- Intermediate results were stored.
- Stable desian:

Virtues of the Slide Rule

- Scientific notation, estimation, no batteries required.
- Develops analog reading abilities. (Gauges, dials)
- Parallel computing.
- Wonderfull applicaton of Logs. Intermediate value theorem.
- Intermediate results were stored.
- Stable design:

Virtues of the Slide Rule

- Scientific notation, estimation, no batteries required.
- Develops analog reading abilities. (Gauges, dials)
- Parallel computing.
- Wonderfull applicaton of Logs. Intermediate value theorem.
- Intermediate results were stored.
- Stable design:

Virtues of the Slide Rule

- Scientific notation, estimation, no batteries required.
- Develops analog reading abilities. (Gauges, dials)
- Parallel computing.
- Wonderfull applicaton of Logs. Intermediate value theorem.
- Intermediate results were stored.
- Stable design:

Virtues of the Slide Rule

- Scientific notation, estimation, no batteries required.
- Develops analog reading abilities. (Gauges, dials)
- Parallel computing.
- Wonderfull applicaton of Logs. Intermediate value theorem.
- Intermediate results were stored.
- Stable design:

Virtues of the Slide Rule

- Scientific notation, estimation, no batteries required.
- Develops analog reading abilities. (Gauges, dials)
- Parallel computing.
- Wonderfull applicaton of Logs. Intermediate value theorem.
- Intermediate results were stored.
- Stable design:

Do you take this Slide Rule as your lawfully-wedded help mate for life?

TIIE MANNHEHM RULE
When Napoleon set out to conquer the world in 1804, his artillery officers were using a simple form of slide rule to solve ballistics and

Slide Rule Scales

SAVARD SIMPLEX LOG-LOG SLIDE RULE

COPYRIGHT 2003 JOHN J. G. SAVARD

Logarithm Tables

- Napier's Bones 1617
- Doubled the life of astronomers.
- Great application of the laws of exponents.
- Linear interpolation
- Table lookup also used for trig, factors, integrals, Laplace transforms
- Which is larger $\log \log \pi+\log e$ or $\log \log e+\log \pi$?

Logarithm Tables

- Napier's Bones 1617
- Doubled the life of astronomers.
- Great application of the laws of exponents.
- Linear interpolation
- Table lookup also usec for trig, factors, integrals, Laplace transforms
- Which is larger $\log \log \pi+\log e$ or $\log \log e+\log \pi$?

Logarithm Tables

- Napier's Bones 1617
- Doubled the life of astronomers.
- Great application of the laws of exponents.
- Linear interpolation
- Table lookup also used for trig, factors, integrals, Laplace transforms
- Which is larger $\log \log \pi+\log e$ or $\log \log e+\log \pi$?

Logarithm Tables

- Napier's Bones 1617
- Doubled the life of astronomers.
- Great application of the laws of exponents.
- Linear interpolation
- Table lookup also used for trig, factors, integrals, Laplace transforms
- Which is laraer $\log \log \pi+\log$ e or $\log \log e+\log \pi$?

Logarithm Tables

- Napier's Bones 1617
- Doubled the life of astronomers.
- Great application of the laws of exponents.
- Linear interpolation
- Table lookup also used for trig, factors, integrals, Laplace transforms...
- Which is larger $\log \log \pi+\log e$ or $\log \log e+\log \pi$?

Logarithm Tables

- Napier's Bones 1617
- Doubled the life of astronomers.
- Great application of the laws of exponents.
- Linear interpolation
- Table lookup also used for trig, factors, integrals, Laplace transforms...
- Which is larger $\log \log \pi+\log e$ or $\log \log e+\log \pi$?

Math Wars

Math wars was roughly speaking a term used over the battle over pencil and paper calculation vs calculators.

- Which was the correct way to introduce elementary age children to arithmetic. (US education 1990's)
- Which is the correct way to do arithmetic. (Algorists vs Abacists, the 400 years war)

Math Wars

Math wars was roughly speaking a term used over the battle over pencil and paper calculation vs calculators.

- Which was the correct way to introduce elementary age children to arithmetic. (US education 1990's)
- Which is the correct way to do arithmetic. (Algorists vs Abacists, the 400 years war)

Math Wars

Math wars was roughly speaking a term used over the battle over pencil and paper calculation vs calculators.

- Which was the correct way to introduce elementary age children to arithmetic. (US education 1990's)
- Which is the correct way to do arithmetic. (Algorists vs Abacists, the 400 years war)

400 Years War

From roughly 1100 to 1500 there was a battle between:
Abacists Use Roman numerals along with the abacus. Algorists Use Hindu-Arabic numerals along with the appropiate algorithms for calculation.

Highlight: Florence 1299 forbid the use of the new numbers in financial procedures.

400 Years War

From roughly 1100 to 1500 there was a battle between:
Abacists Use Roman numerals along with the abacus.
Algorists Use Hindu-Arabic numerals along with the appropiate algorithms for calculation.

Highlight: Florence 1299 forbid the use of the new numbers in financial procedures.

400 Years War

From roughly 1100 to 1500 there was a battle between:
Abacists Use Roman numerals along with the abacus.
Algorists Use Hindu-Arabic numerals along with the appropiate algorithms for calculation.

Highlight: Florence 1299 forbid the use of the new numbers in financial procedures.

400 Years War

From roughly 1100 to 1500 there was a battle between:
Abacists Use Roman numerals along with the abacus.
Algorists Use Hindu-Arabic numerals along with the appropiate algorithms for calculation.

Highlight: Florence 1299 forbid the use of the new numbers in financial procedures.

- Letter stand for values: I for $1, \mathrm{~V}$ for $5, \mathrm{X}$ for 10 , L for $50, \mathrm{C}$ for 100, D for 500, M for 1000.
- Arranged in decreasing size. (MCV and not CVM)
- Letters are repeated for missing values: III for 3, XX for 20, etc
- Sometimes shorthands: IV for 4, CM for 900.
- Other extensions.
- Letter stand for values: I for 1, V for $5, \mathrm{X}$ for 10 , L for $50, \mathrm{C}$ for 100, D for 500, M for 1000.
- Arranged in decreasing size. (MCV and not CVM)
- Letters are repeated for missing values: III for 3, XX for 20, etc
- Sometimes shorthands: IV for 4, CM for 900 .
- Other extensions.
- Letter stand for values: I for 1, V for $5, \mathrm{X}$ for 10 , L for $50, \mathrm{C}$ for 100, D for 500, M for 1000.
- Arranged in decreasing size. (MCV and not CVM)
- Letters are repeated for missing values: III for 3, XX for 20, etc
- Sometimes shorthands: IV for 4, CM for 900.
- Other extensions.
- Letter stand for values: I for $1, \mathrm{~V}$ for $5, \mathrm{X}$ for 10 , L for $50, \mathrm{C}$ for 100, D for 500, M for 1000.
- Arranged in decreasing size. (MCV and not CVM)
- Letters are repeated for missing values: III for 3, XX for 20, etc
- Sometimes shorthands: IV for 4, CM for 900.
- Other extensions.
- Letter stand for values: I for $1, \mathrm{~V}$ for $5, \mathrm{X}$ for 10 , L for $50, \mathrm{C}$ for 100, D for 500, M for 1000.
- Arranged in decreasing size. (MCV and not CVM)
- Letters are repeated for missing values: III for $3, \mathrm{XX}$ for 20 , etc
- Sometimes shorthands: IV for 4, CM for 900.
- Other extensions.

Virtues of Roman Numerals

- Forced one to use an abacus (matched too)
- Much harder to alter entries (try changing an id's XVIII to XXI)
- numeral vs number
- Look important? Use on clocks and movie copyright dates.

Virtues of Roman Numerals

- Forced one to use an abacus (matched too)
- Much harder to alter entries (try changing an id's XVIII to XXI)
- numeral vs number
- Look important? Use on clocks and movie copyright dates.

Virtues of Roman Numerals

- Forced one to use an abacus (matched too)
- Much harder to alter entries (try changing an id's XVIII to XXI)
- numeral vs number
- Look important? Use on clocks and movie copyright dates.

Virtues of Roman Numerals

- Forced one to use an abacus (matched too)
- Much harder to alter entries (try changing an id's XVIII to XXI)
- numeral vs number
- Look important? Use on clocks and movie copyright dates.

Virtues of Roman Numerals

- Forced one to use an abacus (matched too)
- Much harder to alter entries (try changing an id's XVIII to XXI)
- numeral vs number
- Look important? Use on clocks and movie copyright dates.

Virtues of Abacus

- Counting table ancestor: some lines in the sand and some stones to count with. Indeed calculate comes from calculus which is latin for stone. Abacus comes from the greek abax, table covered with sand or fine dust
- positional representation. (1950's netherlands used them in education)
- paperless office (paper wasn't cheap in dark ages)
- add, subtract, multiply, divide

There is a on-line book on how to use the abacus
http://www.tux.org/ bagleyd/takashikojima1.pdf

Virtues of Abacus

- Counting table ancestor: some lines in the sand and some stones to count with. Indeed calculate comes from calculus which is latin for stone. Abacus comes from the greek abax, table covered with sand or fine dust
- positional representation. (1950's netherlands used them in education)
- nanerless office (paper wasn't cheap in dark ages)
- add, subtract, multiply, divide

There is a on-line book on how to use the abacus
http://www.tux.org/ bagleyd/takashikojima1.pdf

Virtues of Abacus

- Counting table ancestor: some lines in the sand and some stones to count with. Indeed calculate comes from calculus which is latin for stone. Abacus comes from the greek abax, table covered with sand or fine dust
- positional representation. (1950's netherlands used them in education)
- paperless office (paper wasn't cheap in dark ages)
- add, subtract, multiply, divide

There is a on-line book on how to use the abacus
http://www.tux.org/ bagleyd/takashikojima1.pdf

Virtues of Abacus

- Counting table ancestor: some lines in the sand and some stones to count with. Indeed calculate comes from calculus which is latin for stone. Abacus comes from the greek abax, table covered with sand or fine dust
- positional representation. (1950's netherlands used them in education)
- paperless office (paper wasn't cheap in dark ages)
- add, subtract, multiply, divide

There is a on-line book on how to use the abacus
http://www.tux.org/ bagleyd/takashikojima1.pdf

Virtues of Abacus

- Counting table ancestor: some lines in the sand and some stones to count with. Indeed calculate comes from calculus which is latin for stone. Abacus comes from the greek abax, table covered with sand or fine dust
- positional representation. (1950's netherlands used them in education)
- paperless office (paper wasn't cheap in dark ages)
- add, subtract, multiply, divide

There is a on-line book on how to use the abacus http://www.tux.org/ bagleyd/takashikojima1.pdf

Euler turns 300

Euler didn't have the technology to prove his analytical results with the same rigor required by today's standards. Or he lived before Cauchy invented $\epsilon-\delta$ technology.

Euler turns 300

Euler didn't have the technology to prove his analytical results with the same rigor required by today's standards. Or he lived before Cauchy invented $\epsilon-\delta$ technology.

- The Basel problem $S=\sum n^{-2}=$? was first done numerically.
- Euler knew $\pi=3.141592653589793238$
- Euler computed $S=1.6449340668482264364$
- Euler came up with an adruement that $S=\pi^{2} / 6$ and the numbers above proved it. (It is better than the current experiments of quantum mechanics)
- Euler eventually answered all the weaknesses of his agruement, - some many years later.

Euler turns 300

Euler didn't have the technology to prove his analytical results with the same rigor required by today's standards. Or he lived before Cauchy invented $\epsilon-\delta$ technology.

- The Basel problem $S=\sum n^{-2}=$? was first done numerically.
- Euler knew $\pi=3.141592653589793238 \ldots$
- Euler computed $S=1.6449340668482264364$
- Euler came up with an agruement that $S=\pi^{2} / 6$ and the numbers above proved it. (It is better than the current experiments of quantum mechanics)
- Euler eventually answered all the weaknesses of his agruement, - some many years later.

Euler turns 300

Euler didn't have the technology to prove his analytical results with the same rigor required by today's standards. Or he lived before Cauchy invented $\epsilon-\delta$ technology.

- The Basel problem $S=\sum n^{-2}=$? was first done numerically.
- Euler knew $\pi=3.141592653589793238 \ldots$
- Euler computed $S=1.6449340668482264364 \ldots$
- Euler came up with an agruement that $S=\pi^{2} / 6$ and the numbers above proved it. (It is better than the current experiments of quantum mechanics)
- Euler eventually answered all the weaknesses of his agruement, - some many years later.

Euler turns 300

Euler didn't have the technology to prove his analytical results with the same rigor required by today's standards. Or he lived before Cauchy invented $\epsilon-\delta$ technology.

- The Basel problem $S=\sum n^{-2}=$? was first done numerically.
- Euler knew $\pi=3.141592653589793238 \ldots$
- Euler computed $S=1.6449340668482264364 \ldots$
- Euler came up with an agruement that $S=\pi^{2} / 6$ and the numbers above proved it. (It is better than the current experiments of quantum mechanics)

Euler turns 300

Euler didn't have the technology to prove his analytical results with the same rigor required by today's standards. Or he lived before Cauchy invented $\epsilon-\delta$ technology.

- The Basel problem $S=\sum n^{-2}=$? was first done numerically.
- Euler knew $\pi=3.141592653589793238 \ldots$
- Euler computed $S=1.6449340668482264364 \ldots$
- Euler came up with an agruement that $S=\pi^{2} / 6$ and the numbers above proved it. (It is better than the current experiments of quantum mechanics)
- Euler eventually answered all the weaknesses of his agruement, - some many years later.

Summing $\zeta(2)$

- Integral test $\sum_{N+1}^{\infty} n^{-} 2 \leq \int_{N}^{\infty} x^{-2} d x=\frac{1}{N}$, Euler needed to sum 10^{19} terms.
- The Euler-MacClaurin formula.
- Accelerating series convergence, Euler transformation $x=y /(1-y)$ maps $y=1 / 2$ to $x=1$.
- Is this like turing completeness? Namely the fastest computer can't do anything a turing machine can do, nor any faster mod polynomial time.

Summing $\zeta(2)$

- Integral test $\sum_{N+1}^{\infty} n^{-} 2 \leq \int_{N}^{\infty} x^{-2} d x=\frac{1}{N}$, Euler needed to sum 10^{19} terms.
- The Euler-MacClaurin formula.
- Accelerating series convergence, Euler transformation $x=y /(1-y)$ maps $y=1 / 2$ to $x=1$.
- Is this like turing completeness? Namely the fastest computer can't do anything a turing machine can do, nor any faster mod polynomial time.

Summing $\zeta(2)$

- Integral test $\sum_{N+1}^{\infty} n^{-} 2 \leq \int_{N}^{\infty} x^{-2} d x=\frac{1}{N}$, Euler needed to sum 10^{19} terms.
- The Euler-MacClaurin formula.
- Accelerating series convergence, Euler transformation $x=y /(1-y)$ maps $y=1 / 2$ to $x=1$.
- Is this like turing completeness? Namely the fastest computer can't do anything a turing machine can do, nor any faster mod polynomial time.

Summing $\zeta(2)$

- Integral test $\sum_{N+1}^{\infty} n^{-} 2 \leq \int_{N}^{\infty} x^{-2} d x=\frac{1}{N}$, Euler needed to sum 10^{19} terms.
- The Euler-MacClaurin formula.
- Accelerating series convergence, Euler transformation $x=y /(1-y)$ maps $y=1 / 2$ to $x=1$.
- Is this like turing completeness? Namely the fastest computer can't do anything a turing machine can do, nor any faster mod polynomial time.

Divergent Series

Abel on divergent series (1828):
. . . Divergent series are in general the work of the devil
shameful to base any demonstration whatever on them ... For the most part the results are valid, it is true, but it is a curious thing. I am looking for a reason and it is a very interesting problem.
Modern theory starts with Frobenius(1880).A good source is Hardy's book (1948) [Now printed by AMS (1992).]

Divergent Series

Abel on divergent series (1828):
... Divergent series are in general the work of the devil and it is shameful to base any demonstration whatever on them ...
the most part the results are valid, it is true, but it is a curious thing. I am looking for a reason and it is a very interesting problem.
Modern theory starts with Frobenius(1880).A good source is Hardy's book (1948) [Now printed by AMS (1992).]

Divergent Series

Abel on divergent series (1828):
... Divergent series are in general the work of the devil and it is shameful to base any demonstration whatever on them ...For the most part the results are valid, it is true, but it is a curious thing. I am looking for a reason and it is a very interesting problem.

Divergent Series

Abel on divergent series (1828):
... Divergent series are in general the work of the devil and it is shameful to base any demonstration whatever on them ... For the most part the results are valid, it is true, but it is a curious thing. I am looking for a reason and it is a very interesting problem.
Modern theory starts with Frobenius(1880).A good source is Hardy's book (1948) [Now printed by AMS (1992).]

Human Calculators - Idiot Savant Dase

A person who is mentally handicapped (or otherwise is ordinary) but displays brilliance in one area, especially one involving memory.

- Computed π to 200 digits
- Hired by Gauss (first person to buy computer time?) to factor the intergers from X to Y .

Human Calculators - Idiot Savant Dase

A person who is mentally handicapped (or otherwise is ordinary) but displays brilliance in one area, especially one involving memory.

- Computed π to 200 digits
- Hired by Gauss (first person to buy computer time?) to factor the intergers from X to Y .

Human Calculators - Idiot Savant Dase

A person who is mentally handicapped (or otherwise is ordinary) but displays brilliance in one area, especially one involving memory.

- Computed π to 200 digits
- Hired by Gauss (first person to buy computer time?) to factor the intergers from X to Y .

Human Calculators - WW2

Calculator was a job title during World War II. Often female, she would do calculations for the military.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Slide Rule in High School Education circa 1964

- Taught in Chemistry class. Along with scientific notation, the ideal gas laws and molarity calculations.
- Getting the decimal point correct. (Estimation.)
- Percentage error, significant digits.
- Low cost items, roughly \$3 (\$15-\$20 in current money)
- No S or T scales, so the technology wasn't used in Trigonometry class. (Most Trig students had already taken Chemistry.) Trigonometry classes used tables of trig and log functions.
- Drawing and reading graphs.

Success of the Calculus Reform

The rule of four:

- Graphs to replace reading scales (gauges)
- (Numerically) Tables to replace using log/trig tables
- V/erbally to replace what?
- Formulas to replace what?

Success of the Calculus Reform

The rule of four:

- Graphs to replace reading scales (gauges)
- (Numerically) Tables to replace using log/trig tables
- Verbally to replace what?
- Formulas to replace what?

Success of the Calculus Reform

The rule of four:

- Graphs to replace reading scales (gauges)
- (Numerically) Tables to replace using log/trig tables
- Verbally to replace what?
- Formulas to replace what?

Success of the Calculus Reform

The rule of four:

- Graphs to replace reading scales (gauges)
- (Numerically) Tables to replace using log/trig tables
- Verbally to replace what?
- Formulas to replace what?

Programing Assignment \#7

```C GELLENOT, 5. F + ENGOR, 5 LAST GJI2. JAN. 26,-1067 ktal:" M=.: R=* y=10+ z=90. XA=9= MRINT* T+X, P=Z+)CA lF(T-13 a 1 2*5,5 x0=-+0.j) %x-y YJ=-KL -Y Y:4. ZO=Y /1<a {B=X+ri=XD 2, 502+H*2D DL & 2=1,4```  ```ナー-xT-YR/14* 2T=Y &/J4& K0=X+H* =S* I XU + XT I MB=Y+C*=5# Y YO+YTJ```  ```T=T++1 l y=Yj 4 CONTTMNL \A= %001 4x+%```		

## Wag the dog

- Graphics Processors double in speed every 12 months (vs 18 for CPUs).
- But they are for games, hence only single percision.
- Slide rules disappeared because they were a small and not very profitable part of scientific instruments.
- HP quit making graphing calculators briefly. The TI-89 hasn't improved mathematically since 1999 and the price as gone up.


## Wag the dog

- Graphics Processors double in speed every 12 months (vs 18 for CPUs).
- But they are for games, hence only single percision.
- Slide rules disappeared because they were a small and not very profitable part of scientific instruments.
- HP quit making graphing calculators briefly. The TI-89 hasn't improved mathematically since 1999 and the price as gone up.


## Wag the dog

- Graphics Processors double in speed every 12 months (vs 18 for CPUs).
- But they are for games, hence only single percision.
- Slide rules disappeared because they were a small and not very profitable part of scientific instruments.
- HP quit making graphing calculators briefly. The TI-89 hasn't improved mathematically since 1999 and the price as gone up.


## Wag the dog

- Graphics Processors double in speed every 12 months (vs 18 for CPUs).
- But they are for games, hence only single percision.
- Slide rules disappeared because they were a small and not very profitable part of scientific instruments.
- HP quit making graphing calculators briefly. The TI-89 hasn't improved mathematically since 1999 and the price as gone up.


## Victorian Internet



## Larger - revisited

$$
\alpha^{\beta}<\beta^{\alpha} \Longleftrightarrow \beta \ln \alpha<\alpha \ln \beta \Longleftrightarrow \frac{\ln \alpha}{\alpha}<\frac{\ln \beta}{\beta}
$$

Need to maximize $f(x)=\frac{\ln x}{x}$ which by calculus happens when $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}=0$ or $\ln x=1$ or $x=e$ So $\alpha^{e}<e^{\alpha}$ for all $\alpha \neq e$ including $\pi$.

## Larger - revisited

$$
\alpha^{\beta}<\beta^{\alpha} \Longleftrightarrow \beta \ln \alpha<\alpha \ln \beta \Longleftrightarrow \frac{\ln \alpha}{\alpha}<\frac{\ln \beta}{\beta}
$$

Need to maximize $f(x)=\frac{\ln x}{x}$ which by calculus happens when $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}=0$ or $\ln x=1$ or $x=e$

## Larger - revisited

$$
\alpha^{\beta}<\beta^{\alpha} \Longleftrightarrow \beta \ln \alpha<\alpha \ln \beta \Leftrightarrow \frac{\ln \alpha}{\alpha}<\frac{\ln \beta}{\beta}
$$

Need to maximize $f(x)=\frac{\ln x}{x}$ which by calculus happens when $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}=0$ or $\ln x=1$ or $x=e$ So $\alpha^{e}<e^{\alpha}$ for all $\alpha \neq e$ including $\pi$.


## Summary

- Does the history of obsolete technology give insight into the rapid change of today's techonology?


## Summary

- Does the history of obsolete technology give insight into the rapid change of today's techonology?
- The analog world had virtues.

