
Computational Methods in Biology (Spring 2019)

Fast–Slow Analysis of Bursting

Exercises due April 19

This problem examines the first model for the bursting electrical activity of pan-

creatic β-cells. These cells are located in cell clusters called islets of Langerhans

and secrete the hormone insulin when they spike. Thus, bursts of electrical activity

induce pulses of insulin secretion into the capillaries that penetrate the islets. The

first mathematical model for bursting in β-cells was developed by Chay and Keizer

in 1983. The model we will look at is a hybrid of the Chay-Keizer model and the

Morris-Lecar model. The code (CK.ode) can be downloaded from my web site. The

differential equations are:

dV

dt
= −(IK + ICa + IK(Ca) + IK(ATP ))/Cm

dn

dt
= λ(n∞(V )− n)/τn

dc

dt
= autoc · (cknot− c) + (1− autoc) · f · Jmem

where IK(ATP ) is K+ current that is inactivated by ATP (just think of it as a leak

current), Jmem is the Ca2+ flux through the plasma membrane, and autoc and cknot

are used to clamp c at the value cknot. To clamp c (i.e., make it a parameter), set

autoc = 1. If autoc = 0 (the default value), c will change with time (i.e., it will be a

variable).

(1) Start the CK.ode code with XPP. You should see a bursting pattern. The

goal now is to perform a fast–slow analysis of this system by treating calcium

concentration (c) as a slowly-changing parameter of the system. The first step

is to construct a bifurcation diagram of the fast subsystem, with c treated as

the bifurcation parameter. To clamp c so that it does not vary with time set

“autoc=1”. This will clamp c at the value c = cknot, which is currently set at

0.3. At this value of c the K(Ca) current is very active, which hyperpolarizes

the cell so that it comes to rest at a low voltage. Use this as the starting

point for a bifurcation diagram. Open Auto, and use cknot as the primary

bifurcation parameter, and make λ the second parameter. Create a bifurca-

tion diagram, showing both stationary and periodic branches for cknot over

the range [0, 0.3]. Print this out and turn it in. Identify the bifurcations that

occur.
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Save the bifurcation diagram by clicking (in Auto) File, and then Write pts.

This will save a file called diagram.dat. You can read this into a window for

the V -c phase plane. In XPP make a new window for V vs. c and within

that window click Graphic stuff, Freeze, and then Bif. Diag. This will allow

you to read in diagram.dat. Now we can treat the bifurcation diagram as a

generalized V -nullcline in the V -c phase plane. Unclamp c (set autoc = 0)

and run. Make a hand-drawn sketch of what you see and turn it in (label all

curves and include an orientation on the trajectory).

(2) The parameter λ changes the periodic branch without affecting the stationary

branch of the fast-subsystem bifurcation diagram. Explain why. Then do a

2-parameter bifurcation diagram (cknot and λ are the two parameters). Trace

out curves of saddle-node bifurcations, Hopf bifurcations, and homoclinic bi-

furcations. To make the homoclinic curve grab a point on the periodic branch

(this should have a label) with large period, click Run and then Fixed period.

(Auto can’t follow homoclinic orbits since their period is infinite, but it can

follow an almost-homoclinic orbit which has a large period. However, to make

this a good approximation of the homoclinic, the point that you grab must

be close to the homoclinic bifurcation with large period, so make sure there

is a label near the end of the branch. You can control the number of labels

printed with the NPr parameter in the Numerics window of Auto.) Turn in

the two-parameter bifurcation diagram (label all curves) in the cknot vs. λ

plane with cknot between 0 and 0.3 and λ between 0.5 and 1.5. What hap-

pens to the Hopf and homoclinic bifurcations as λ is increased past its default

value of 1.07? For some values of λ there are two Hopf bifurcations and no

homoclinic bifurcations. Use your 2-parameter bifurcation diagram and trial

and error to find such a λ value and, using that value, make a 1-parameter

bifurcation diagram just as you did in the first problem. Print this out and

turn it in. What happens to the Hopf bifurcations as λ is increased further?

At approximately what value of λ do the Hopf bifurcations come together?

(When two bifurcations occur at once it is called a codimension-2 bifurcation.)

(3) Unclamp c (set autoc = 0) and set λ = 0.8. What happens to the bursting?

Explain, in terms of what you observed in the previous problem.

(4) Now we will examine what happens to the fast subsystem when the gca pa-

rameter (maximum conductance of the Ca2+ current) is varied. Start with

the default parameter values and generate a 1-parameter bifurcation diagram

with cknot as bifurcation parameter. Next, generate a 2-parameter bifurca-

tion diagram with gca as the second parameter, tracing out the SN and HB
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bifurcations. Do this for cknot ∈ [−0.2, 0.4] and gca ∈ [800, 1100]. Turn this

in, with bifurcation curves labeled.

(5) Using the 2-parameter bifurcation diagram from the previous problem, and

some trial and error, find values of gca for which each of the following are

true in the 1-parameter diagram (the diagram with cknot as the bifurcation

parameter). In each case, construct the 1-parameter diagram with Auto, print

it out, and turn it in.

(a) There is one HB between the left SN and the right SN. The periodic

branch that emerges from it ends at a homoclinic bifurcation.

(b) There are two HBs between the left and right SNs, and the periodic

branch emerging from each terminates with a HM bifurcation.

(c) There are two HBs between the left and right SNs, and these are con-

nected by a single periodic branch.

(d) There are no HBs and both the bottom and top stationary branches of

the 1-parameter diagram are entirely stable.


