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Abstract

Many infectious diseases spread through populations via the networks formed by physical contacts among individuals. The

patterns of these contacts tend to be highly heterogeneous. Traditional ‘‘compartmental’’ modeling in epidemiology, however,

assumes that population groups are fully mixed, that is, every individual has an equal chance of spreading the disease to every other.

Applications of compartmental models to Severe Acute Respiratory Syndrome (SARS) resulted in estimates of the fundamental

quantity called the basic reproductive number R0—the number of new cases of SARS resulting from a single initial case—above one,

implying that, without public health intervention, most outbreaks should spark large-scale epidemics. Here we compare these

predictions to the early epidemiology of SARS. We apply the methods of contact network epidemiology to illustrate that for a single

value of R0; any two outbreaks, even in the same setting, may have very different epidemiological outcomes. We offer quantitative

insight into the heterogeneity of SARS outbreaks worldwide, and illustrate the utility of this approach for assessing public health

strategies.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

More than two years since the first case of severe
acute respiratory syndrome (SARS), a respiratory illness
caused by a novel coronavirus, occurred in Guangdong
province of China (November, 2002) and more than 18
e front matter r 2004 Elsevier Ltd. All rights reserved.
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months since the syndrome was first recognized outside
of Asia (in Canada on March 13, 2003), its pattern of
spread remains an enigma to public health officials and
epidemiologists (Cyranoski and Abbott, 2003; Drosten
et al., 2003; Ksiazek et al., 2003; Marra et al., 2003;
Peiris et al., 2003; World Health Organization, 2003).
Mathematical epidemiologists originally estimated the
average number of secondary cases emanating from one
primary case in a susceptible population (R0) to be in the
range of 2.2 to 3.6 for this virus—an estimate well above
one, approximating that of a new subtype of influenza
(Hethcote, 2000; Lipsitch, 2003; Riley et al., 2003).
Despite this estimate and near-universal susceptibil-

ity, SARS has not emerged as a global pandemic.
Instead, initial seeding was followed by intense but
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tightly circumscribed activity in some locales with only
scant activity in others. In Canada, for instance,
Toronto, Ontario and Vancouver, British Columbia
were first affected nearly simultaneously in March 2003.
By June 3, 2003, Toronto had experienced more than
209 probable cases and Vancouver had experienced only
four probable cases. No other province of Canada
reported any probable cases (Health Canada, 2003). The
United States with a population more than fifty-fold
greater than Toronto reported 69 probable cases—67
imported and only two from secondary spread (Centers
for Disease Control and Prevention, 2003).
The discrepancy between the estimates of R0 and the

observed epidemiology might stem from early and
effective intervention since Rt; the reproductive ratio
of a disease at time t, will decrease with the implementa-
tion of successful infection control measures. Yet, even
during the three and a half months of SARS spread in
China between its initial appearance and the broad
implementation of public health measures, case counts
were much less than expected from such values of R0

(Xu et al., 2004). By definition, the total number of
expected cases of a disease goes up by a factor of R0 for
every generation of infection, a generation being the
mean time between an individual becoming infected and
their infecting others. Based on recorded dates of the
first symptoms for 124 pairs of infections in Singapore
and Toronto (Leo et al., 2003; Poutanen et al., 2003), we
estimate the average generation time (g) for SARS to be
9.770.3 days. (This estimate clearly depends on the
accuracy of the reported data.) Roughly, the cumulative
number of SARS cases over D days should bePD=g

i¼0 ðR0Þ
i
¼ ð1� R

D=gþ1
0 Þ=ð1� R0Þ (This is capped by

total population size and does not consider the
reduction in Rt once a substantial proportion of the
population is infected). Thus for R0 ranging between 2.2
and 3.6, this equation predicts that in the first 120 days
of transmission in China, there should have been
between approximately 30,000 and 10 million cases. In
fact only 782 cases were reported during the initial three
months (World Health Organization, 2003), which,
using this simple calculation, suggests that R0 should
be much lower and closer to 1.6. A subsequent estimate
based on data from the Hong Kong and Singapore
outbreaks brings R0 down to 1.2, which, by the above
formula, predicts approximately 50 cases during the first
120 days of transmission (Chowell et al., 2003). While
this number agrees nicely with the case counts observed
in Hong Kong and Singapore (Chowell et al., 2003a, b)
it is an order of magnitude lower than that reported for
China.
Why do epidemiologists derive such varied estimates

of R0 and why were the initial estimates so high in
comparison to the observed epidemiology in China? The
basic premise of fully mixed epidemiological models—
that all individuals in a group are equally likely to
become infected (or infect others)—often does not hold
and therefore may lead to spurious estimates or
estimates that cannot justifiably be extrapolated from
the specific setting in which they were measured to the
broader community context. Early SARS estimates were
based largely on transmission data from closed settings
like hospitals and crowded apartment buildings, where
there are unusually high rates of contact between
individuals (Lipsitch, 2003; Riley et al., 2003). In fact,
hospital transmission accounts for 50% of the value of
R0 described in Riley et al. (2003). If the contact patterns
in these settings were highly heterogeneous, then the
estimates for R0 may be inaccurate. Even if the estimates
for R0 were indeed appropriate for these specific
settings, they probably should not be extrapolated to
the population at large. Contact rates may be consider-
ably lower outside hospitals and crowded apartment
buildings and thus so may be the general value of R0 for
SARS (Yu et al., 2004). Such disparity may account for
the discrepancy between the estimates and the slower
progress of the outbreak in China. In fact, further
studies suggest that the unusually large cluster of
infected cases in Amoy Gardens complex in Hong Kong
was due to exposure to the virus-laden aerosol plume
originating from one of the buildings in that area and
not from direct person-to-person contact (Yu et al.,
2004). A recent analysis of the impact of SARS isolation
interventions in Hong Kong, Singapore and Toronto
emphasizes the importance of viewing R0 as a distribu-
tion of possible values where the mean and median may
vary depending on the setting in which the disease is
spreading (Chowell et al., 2004).
SARS, like many other infectious diseases exhibits

great heterogeneity in transmission efficiency with
certain individuals appearing to be responsible for large
proportion of transmission events (Booth et al., 2003;
Donnelly et al., 2003; Leo et al., 2003). These individuals
may be ‘‘superspreaders’’ with unusually large numbers
of contacts or ‘‘supershedders’’ who are unusually
effective at excreting the virus into the environment
they share with others. In contrast to the fully mixed
assumption of standard compartmental models, the
contact patterns in a community may be quite diverse.
There is an enormous difference between a situation in
which all individuals share typical contact patterns and
one in which most infected individuals pass the disease
on to only one or even zero others, but a small number
pass it onto dozens or even hundreds—the mean value
of R0 can be the same in both cases, while the
epidemiological outcomes are vastly different.
Public health control measures for communicable

diseases, including contact tracing, isolation, quaran-
tine, and ring vaccination (Greenhalgh, 1986; Müller et
al., 2000) have historically been predicated on socio-
logical considerations. For example, the strategies for
international SARS control were founded upon the
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Fig. 1. Schemata of: (A) urban, (B) power law, and (C) Poisson

networks. Dots represent individuals and lines between dots represent

contacts between individuals that could potentially lead to disease

transmission.
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largely intuitive idea of early interruption of critical
social contacts (World Health Organization, 2003).
There are several mathematical approaches that likewise
consider sociological factors. To name a few, compart-
mental models that break populations into many
demographic groups capture greater behavioral hetero-
geneity (Hethcote and Yorke, 1984); stochastic ap-
proaches including stochastic compartmental models
(Bailey, 1975), branching process models (Becker, 1977;
Farrington et al., 2003), dyad models (Keeling et al.,
1997; Ferguson and Garnett, 2000), and Reed-Frost
chain-binomial models (Lefevre and Picard, 1989) allow
more exact predictions of the size and probability of
epidemics; and ‘‘individual-based modeling’’, a primar-
ily computational approach based on following the
contact and infection histories of simulated individuals,
yields detailed statistical predictions about disease
outcomes. Most individual-based models assume pre-
defined simple contact patterns such as regular lattices
(Durrett, 1999; Kleczkowski and Grenfell, 1999; Ritton
and O’neill, 2002; Sander et al., 2002), although there
have been recent efforts to consider more realistic
contact patterns (Van der Ploeg et al., 1998; Chowell
et al., 2003a, b; Eubank et al., 2004).
A recent addition to this toolkit is contact network

epidemiology, an analytical framework that explicitly
captures the diverse interactions that underlie the spread
of diseases (Longini 1988; Sattenspiel and Simon, 1988;
Morris, 1995; Ball et al., 1997; Diekmann et al., 1998;
Lloyd and May, 2001; Newman, 2002; Keeling et al.,
2003; Meyers et al., 2003). The first step in contact
network epidemiology is to construct networks based on
information about real-life contacts between indivi-
duals. One can then analyse these networks to determine
their crucial topological features and apply analytical
methods to make epidemiological predictions and
intervention recommendations. The two primary ad-
vantages of this approach are that (i) it makes no a
priori assumptions about the global network structure
and (ii) the mathematical analysis allows one to bypass
extensive simulation.
Here, we extend the mathematics of contact network

epidemiology to make more detailed public health
predictions, to demonstrate the importance of an
accurate model of contact patterns in a community,
and to provide new insight into the observed epidemiol-
ogy of SARS.
2. Contact networks

Contact network models attempt to characterize every
interpersonal contact that can potentially lead to disease
transmission in a community. These contacts may take
place within households, schools, workplaces, hospitals,
etc. (Fig. 1A). Each person in a community is
represented as a vertex in the network and each contact
between two people is represented as an edge (line)
connecting their vertices. The number of edges emanat-
ing from a vertex, that is, the number of contacts a
person has, is called the degree of the vertex. The
distribution of the numbers of contacts—the degree
distribution—is a fundamental quantity in network
theory.
In the studies described here, we start by generating a

plausible contact network for an urban setting using
computer simulations. The simulations are based on
data for the city of Vancouver, British Columbia. We
choose N=1000 households at random from the
Vancouver household size distribution (Statistics Cana-
da, 2001), which yields approximately 2600 people.
Household members are given ages according to the
measured Vancouver age distribution (BC Stats, 2003),
and, based on age, are then assigned to schools
according to school and class size distributions (Van-
couver School Board, 2002), to occupations according
to (un)employment data (BC Stats, 2002), to hospitals
as patients and caregivers according to hospital employ-
ment and bed data (Centre for Health Services and
Policy Research, 2002), and to other public places.
Within each location we create random connections
between individuals with probabilities of 1 for house-
holds, 0.3 for hospitals and schools, 0.03 for workplaces,
and 0.003 for other public places. Admittedly, these
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Fig. 2. Cumulative degree distributions for simulated urban, Poisson,

and power law networks. As described in the text, these share the same

epidemic threshold (Tc). Each line gives the probability that a

randomly chosen individual (vertex) will have at least the number of

contacts (degree) indicated on the x-axis. The degree distribution for

the urban network is nearly exponential for degrees greater than ten.
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within-location parameters are largely based on intui-
tion, and future versions of this model will include
estimates based on data. We found that the structure of
these simulated networks is robust to small changes in
these values. Each school or hospital is sub-divided into
classrooms or wards. Pairs of students or patients within
these sub-units were connected with higher probability
than pairs associated with different sub-units. Teachers
are assigned to classrooms and connected stochastically
to appropriate students. Caregivers are assigned wards
and then connected to appropriate patients. There are
also low probability neighborhood contacts between
individuals from different households3.
This network offers a high degree of realism but is

quite complex. We therefore use two simpler networks to
provide additional insight. One is a random network with
a Poisson degree distribution in which individuals
connect to others independently and uniformly at
random (Fig. 1B). Neither the simulated nor the Poisson
network, however, contains a significant fraction of
superspreaders. Therefore we also study a network with
a (truncated) power-law degree distribution (Fig. 1C), a
form much discussed in recent work on network
epidemiology (Barabasi and Albert, 1999; Pastor-Sator-
ras and Vespignani, 2001). This network has a ‘‘heavy
tail’’ of superspreaders (Fig. 2) and, as we will see, these
individuals can have a profound effect on outbreak
patterns despite being few in number. Network theorists
often refer to such networks as scale-free because of the
absence of a typical degree in the network.
We define the transmissibility of a disease, T, to be the

average probability that an infectious individual will
transmit the disease to a susceptible individual with
whom they have contact. T summarizes core aspects of
disease transmission including the rate at which contacts
take place between individuals, the likelihood that a
contact will lead to transmission, the duration of the
infectious period, and the susceptibility of individuals to
SARS. The epidemic threshold, which, in an uncorre-
lated network, is given by

Tc ¼
hki

hk2
i � hki

;

where hki and hk2
i are the mean degree and mean square

degree of the network, respectively, is the minimum
transmissibility (T) required for an outbreak to become a
large-scale epidemic.
We choose the parameters of the Poisson and power

law networks so that all three networks share the same
epidemic threshold Tc. Let pk denote the probability that
a randomly selected individual in a network has degree
k. Then, the Poisson network is given by pk ¼
3The authors will provide copies of the simulation software and a

detailed list of parameter values to any interested readers upon request.
ðmk=k!Þ expð�mÞ with mean contact number m=19.6;
and the power law network is given by

pk ¼
0 for k ¼ 0;

Ck�a exp �k
k

� �
for k40;

(

with distribution parameters k=94.2 and a=2. Here we
fixed a and solved for k. The results described below are
qualitatively similar for a large range of values of a.
Truncation of the power law distribution raises the
epidemic threshold of the network to values comparable
to those found for urban networks.
To generate the two idealized networks, we begin with

a specified number of vertices and choose degrees for
these vertices at random from the desired degree
distribution. Then we connect random pairs of vertices,
until the chosen degrees are exhausted. This often yields
imperfect graphs with loops connecting vertices to
themselves or redundant edges that connect the same
two vertices more than once. We remove these imperfec-
tions using an algorithm suggested by Maslov et al.
(2001) in which we select at random two edges connect-
ing, for example, vertex pairs AB and CD, and swap
them so that they now connect AC and BD, unless this
would create a new loop or double edge, in which case we
do nothing. This process occasionally eliminates loops
and repeated edges and by repeating it a sufficiently large
number of times (depending on the network size) we can
produce a network with none at all.

2.1. Epidemiological analysis

Given the degree distribution of a network, we can
use tools based on percolation theory (Pastor-Satorras
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and Vespignani, 2001; Newman, 2002) to predict the
fate of an outbreak of an infectious disease as a function
of its transmissibility T (defined above). T is related to
the traditional R0 according to

R0 ¼ Tðhk2
i=hki � 1Þ;

where hki and hk2
i are the mean degree and mean square

degree of the network, respectively. The critical transmis-
sibility value Tc (also defined above), corresponds to R0=1,
above which a population is vulnerable to large scale
epidemics (but is not guaranteed to experience an epidemic)
and below which only small local outbreaks occur.
Network theory makes a technical distinction between

outbreaks and epidemics. An outbreak is a causally
connected cluster of cases that, by chance or because the
transmission probability is low, dies out before spread-
ing to the population at large. In an epidemic, on the
other hand, the infection escapes the initial group of
cases into the community at large and results in
population-wide incidence of the disease. The crucial
difference is that the size of an outbreak is determined
by the spontaneous dying out of the infection, whereas
the size of an epidemic is limited only by the size of the
population through which it spreads.
To predict the fate of an outbreak, we use probability

generating functions (pgf), quantities that describe prob-
ability distributions, and here, summarize useful informa-
tion about network topology. The pgf for a degree
distribution is

G0ðxÞ ¼
X1
k¼1

pkxk:

If we choose a random edge and follow it to the nearest
vertex, then the pgf for the ‘‘excess degree’’—the number
of edges emanating from that vertex other than the one
along which we arrived—is

G1ðxÞ ¼

P1
k¼1

kpkxk�1

P1
k¼1

kpk

:

The average degree and average excess degree equal the
derivatives of these expressions at x=1, that is,

hki ¼
X1
k¼1

kpk

and

hkei ¼

P1
k¼1

kðk�1ÞpkP1
k¼1

kpk

¼ ðhk2
i=hki � 1Þ;

respectively.
The value of the epidemic threshold Tc, the predicted

average size of an outbreak /sS and probability of an
epidemic S were first derived in (Newman, 2002). By
nesting pgf’s for the number of new infections emanat-
ing from an infected vertex one can construct a pgf for
the size of a outbreak, and hence derive the average size
of a outbreak:

os4 ¼ 1þ Thki
1�Thkei

:

This expression diverges when an outbreak becomes a
large-scale epidemic. The epidemic threshold Tc (above)
is the transmissibility value that marks this point.
The probability of a full-blown epidemic S is derived

by first calculating the likelihood that a single infection
will lead to only an outbreak instead of a full-blown
epidemic, and then subtracting that value from one:

S ¼ 1�
X1
k¼1

pkð1þ ðu � 1ÞTÞ
k;

where u is the probability that the person at the end of
an edge does not have the disease and is the solution to
the equation

u ¼

P1
k¼1

kpkð1þðu�1ÞTÞ
k�1

P1
k¼1

kpk

:

We use numerical root finding methods to solve for u. S

is also the expected proportion of the population that
will be infected should an epidemic occur.
Here we extend these results to predict the fate of an

outbreak based on its initial conditions—how many and
what kinds of individuals are already infected. We refer
to the first individual in a community to come down
with an infectious disease as patient zero. The prob-
ability that a patient zero with degree k will start an
epidemic, ek, is equal to the probability that transmis-
sion of the disease along at least one of the edges
emanating from the original vertex will lead to an
epidemic. For any one of its k edges, 1� T is the
probability that the disease does not get transmitted
along the edge and Tu is the probability that even if
disease is transmitted to the next vertex, it does not
proceed into a full-blown epidemic. Thus

�k ¼ 1� ð1� T þ TuÞk:

The probability that an outbreak of size N will ignite an
epidemic is 1�

QN
i¼1ð1� �ki

Þ where ki is the degree of
individual i. This is just one minus the probability that
none of the N infected individuals sparks an epidemic. If
we know the number of current cases but not their
contact patterns, then our best estimate for the
probability of an epidemic is calculated similarly, with
each of the ð1� �ki

Þ’s replaced with the probability that
a typical infected individual does not spark an epidemic.
The number of edges through which a typical infected
individual can start an epidemic is given by the excess
degree pgf, and the probability that one of those edges
will not give rise to an epidemic is 1� T þ Tu: Thus the
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probability that none of those edges will be a conduit to
an epidemic is

P1
k¼1

kpkð1�TþTuÞk�1P1
k¼1

kpk

0
B@

1
CA;

and the probability that an outbreak of size N sparks an
epidemic is

1�

P1
k¼1

kpkð1�TþTuÞk�1P1
k¼1

kpk

0
B@

1
CA

N

:

Finally, we derive an individual’s risk of infection during
an epidemic as a function of his or her degree. The
probability nk that an individual with degree k will
become infected during an epidemic is equal to one
minus the probability that none of his or her k contacts
will transmit the disease to him or her. The probability
that a contact does not transmit the disease is equal to
the probability that the contact was infected, but did not
transmit the disease, (1�u)(1�T), plus the probability
that the contact was not infected in the first place, u.
Thus, a randomly chosen vertex of degree k will become
infected with probability

nk ¼ �k ¼ 1� ð1� T þ TuÞk:
Fig. 3. Predicting outbreaks and epidemics. The left graph illustrates the av

below the epidemic threshold. The right graph illustrates S, the probability t

equals the expected fraction of the population infected during an epidemic, sh

for SARS pre-intervention (right) and post-intervention (left) (Chowell et al.

parameters for the power law and Poisson networks so that for any value of T

2571 simulated epidemics, each starting with a unique individual in the netw
2.2. Epidemic simulations

We have simulated disease spread to verify our
analytical predictions. Beginning with a susceptible
population and a single case or a small cluster of cases,
we iteratively take each currently infected vertex, infect
each of its susceptible neighbors with probability T and
then change the status of the original vertex to
recovered. This method of simulation does not capture
the temporal progression of an epidemic, but just the
overall number and distribution of infected individuals.
2.3. Predicting epidemics in the contact networks

We predicted the probability S that an outbreak with
R041 will lead to an epidemic for the three networks
described in Figs. 1 and 2. S is often significantly less
than one, and can be different for two networks with the
same R0 (Fig. 3). When S is well below one and R0 is
well above one, it is very likely that communities with
similar contact patterns will have diverse experiences
with the disease, some experiencing large epidemics and
other experiencing only minor outbreaks. In particular,
above the epidemic threshold, the probability of an
epidemic in the power law network and the probability
of an epidemic in either of the other networks diverge
quickly. Outbreaks are consistently less likely to reach
epidemic proportions in the power law network than in
the others. The vertical lines in Fig. 3 correspond to
erage number of people infected in a small outbreak, /sS, when T is

hat an epidemic occurs when T is above the epidemic threshold. S also

ould one occur. The vertical lines correspond to recent estimates of R0

, 2003; Lipsitch et al., 2003; Riley et al., 2003). Note that we chose the

, all three networks share the same R0: Simulation values are based on
ork.
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estimates of R0 for SARS in these three networks
(Chowell et al., 2003; Lipsitch, 2003; Riley et al., 2003).
The different vulnerability of these networks arises

from differences in the patterns of interpersonal
contacts. For example, power law networks are made
up primarily of vertices with very few contacts, and have
a small minority of superspreaders of high degree. They
will surpass the epidemic threshold when there is a non-
negligible probability that an outbreak will reach
members of this minority. Because superspreaders are
rare, however, any particular outbreak may fail to reach
this minority and thus never generate an epidemic. In
contrast, vertices in a Poisson network will be fairly
homogeneous and any two small outbreaks will be
essentially equivalent. Whereas a power law network
reaches an epidemic threshold only when transmissi-
bility is sufficiently high to reach superspreaders with
reasonable frequency, a Poisson network reaches an
epidemic threshold only when the ‘typical’ outbreak
leads to an epidemic. Thus in the Poisson network, most
outbreaks above the epidemic threshold give rise to
epidemics.
Stochastic compartmental models predict that a

population with R041 will experience an epidemic with
probability 1� 1=R0 (Bailey, 1975; Renshaw, 1991).
How do we reconcile this prediction with the observa-
tion that three different networks all sharing the same
R0 have different epidemic vulnerabilities? In general,
compartmental models make simple assumptions about
contact patterns. The standard SIR model, for example,
assumes a Poisson degree distribution. Thus, such
predictions may hold for a single class of degree
distribution, but cannot be generalized to arbitrary
networks.
We also predict the size of a small outbreak when

ToTc, an estimate that is often not attainable with
compartmental models (Fig. 3). Below the threshold, a
typical outbreak in a power law network will die out
after only one or two cases, whereas such outbreaks in
the simulated urban or Poisson networks will include,
on average, eight or ten individuals. Predicting the
average size of a non-epidemic outbreak, /sS, can aid
in intervention against infectious diseases that rarely or
never become self-sustaining epidemics but nevertheless
have significant impact.
The similarity between the values of S and

/sS predicted analytically and those measured
through simulation (Fig. 3) suggest that the anal-
ytical tools provide a powerful shortcut around compu-
tationally expensive epidemic simulations. While it
may not be surprising that the randomly assembled
power law and Poisson networks should fit the
analytical predictions well, the simulated urban network
introduces additional correlations in the network
structure that are not considered in our analytic
calculations.
3. The impact of the initial conditions

Given that, for most diseases and most communities,
the introduction of a single case may or may not spark
an epidemic, we can ask what factors favor one or the
other outcome (epidemic or no epidemic). Using the
formulas described above, we predict the likelihood of
an epidemic as a function of the degree of patient zero.
Both simulation and analysis of the simulated urban
network illustrate that the likelihood of an outbreak is a
monotonically increasing function of the degree of
patient zero (Fig. 4A). Near the epidemic threshold,
the risk increases exponentially with degree, whereas
well above the epidemic threshold (e.g., R0 ¼ 2:7), the
risk increases steeply until an epidemic is almost
guaranteed. Therefore, even without differences in
public health intervention, two identical communities
can experience significantly different SARS outbreaks if
the contact patterns of the first cases in each community
differ.
In Fig. 4B, we predict the probability of an epidemic

based on the size of the initial outbreak. Intuitively, the
more initial cases there are, the more precarious the
outcome. For diseases far above the epidemic threshold,
the threat of an epidemic is overwhelming for even very
small outbreaks. Thus vigilant tracking of case-contacts
of the first few cases is of paramount importance in the
control of such a disease.
4. The impact of intervention

Along with the behavior of patient zero, individual
and organized forms of disease intervention can
dramatically affect an outbreak. Here we describe a
simple application of our analytical toolkit to predict the
efficacy of control measures. There are two basic
categories of intervention. Transmission interventions,
like wearing face masks and washing hands, reduce the
likelihood that a contact with another person leads to
transmission of the disease. Contact interventions, like
avoiding public places and rearranging the patterns of
interaction between caregivers and patients in a hospital,
eliminate or reduce the opportunity for such contacts.
Individuals can protect themselves by adopting such

measures. If followed equally rigorously, an individual
will benefit equally from the two forms of intervention.
That is, by reducing one’s contacts by a fraction a, an
individual of degree k reduces his or her risk of infection
from 1� ð1� T þ TuÞk to 1� ð1� T þ TuÞak; and
reducing the likelihood of transmission per encounter
by the same fraction a, reduces the risk to 1� ð1�
aT þ aTuÞk: To leading order, these two probabilities
are equal. The efficacy of these strategies increases with
the magnitude of the intervention a, decreases with the
degree of the individual, and depends on the nature of
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Fig. 4. Predicting an epidemic from initial conditions. (A) The

probability that patient zero will ignite a full-blown epidemic increases

monotonically with his or her degree. The calculations are based on the

simulated urban network. Simulation values are based on 2571

simulated epidemics, one for every unique patient zero in the network.

Discrepancy between simulations and analysis is likely caused by the

finite size of the network, which contains very few high degree vertices,

and by the intrinsic community structure in which high degree vertices

(like teachers and caregivers) are preferentially connected to each

other. (B) The probability of a full-blown epidemic in the simulated

urban network increases with the size of the initial outbreak. This

calculation does not assume knowledge of the specific degrees of the

individuals affected in the outbreak, information that would improve

the prediction. For each circle in the graph, we ran 100 simulations

starting with the appropriate number of randomly selected initial cases

and calculated the fraction of those outbreaks that gave rise to an

epidemic.

Fig. 5. Individual intervention. The probability that an individual will

become infected increases with the extent of personal precautions and

the average transmissibility of the disease (calculated for a simulated

urban network). For example, the 25% lines indicate the risk of

infection if an individual who either reduces his/her contacts by 25%

or lowers the likelihood of transmission per contact by 25%.
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the underlying contact network (Fig. 5). Near the
epidemic threshold, individuals of different degree
benefit equally from such strategies. Well above the
epidemic threshold, the more limited one’s contacts, the
greater the impact of such interventions. For very highly
connected individuals, partial interventions will have
little or no effect.
There are situations where one form of intervention is

more feasible than the other. In such cases, instead of
comparing transmission and contact reductions of equal
compliance (as in Fig. 5), one should compare transmis-
sion and contact interventions of equal feasibility. For
example, the surgical masks seen on the streets of Hong
Kong may be poorly effective against the SARS agent,
and may hardly lower transmissibility, whereas the N-95
or surgical masks worn by hospital workers may be
quite effective (Seto et al., 2003). Furthermore, indivi-
duals may easily reduce their social interactions by
avoiding crowded shopping malls and movie theaters,
whereas hospital caregivers may be unable to reduce the
number of patients with whom they interact. Thus,
taking into account intervention feasibility, members of
the general public may be advised to avoid contact
opportunities, whereas hospital employees should invest
in high efficiency masks.
Policy makers take a more statistical approach to

intervention than do individuals. Their goal is to reduce
the likelihood and size of epidemics while minimizing
cost. The most restrictive policies, such as closed borders
and quarantining every member of society, are econom-
ically catastrophic. Network theory allows us to predict
quantitatively the epidemiological impacts of diverse
strategies, which can then be paired with economic and
sociological assessments of such strategies. We provide a
simple example of such analysis.
Widespread adoption of transmission interventions

will lower T and may successfully bring a population
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under the epidemic threshold. For example, if a disease
is spreading through our simulated urban network with
T ¼ 0:1550 (equivalently, R0 ¼ 2:7), then Fig. 3 indi-
cates that average transmissibility must be lowered by
62.9% to bring the population under the epidemic
threshold (i.e., under T ¼ 0:0575). An intervention that
lowers transmission by less than 62.9% (for example,
poor quality face masks) will not in itself prevent the
emergence of an epidemic.
As illustrated in Fig. 6, policy makers can also

consider the quantitative impact of contact reducing
interventions. For a disease with R0 ¼ 2:7 (T=0.1662)
spreading through the Vancouver-like network, 50%
reductions in contacts will have variable impact
depending on the targeted demographic. Health care
workers are more at risk than school children, other
working adults, and non-working adults. A typical non-
working adult cuts his risk of infection by approxi-
mately 33% when he or she eliminates half of previous
contacts, whereas a health care worker cuts his or her
risk by only 17%. These reductions also reduce the
probability that the individual will spark a large-scale
epidemic by similar amounts. Policy makers can
consider the impact of not only individual compliance,
but also of large-scale intervention. For example, closing
all schools would reduce the probability of an epidemic
from 84.9% to 73.8%. In a related article, we use these
methods to compare a large range of control measures
for a spectrum of respiratory-borne diseases (Pourboh-
loul et al., In review).
Fig. 6. Demographics of intervention. The impact of contact-reducing

interventions varies by demographic sector. Health care workers are

most at risk followed by school children, working adults, and non-

working adults. Light bars reflect baseline risk before intervention and

dark bars reflect reduced risk to an individual who limits his or her

contacts to half of the previous amount. Error bars are 95%

confidence intervals that reflect underlying diversity of contact patterns

within each demographic sector.
5. Discussion

Contact network modeling of disease transmission
allows us to make quantitative predictions about the
scale of outbreaks from information about the first few
cases (Fig. 4). This provides insight into the very
different SARS outbreaks in Toronto and Vancouver.
The first cases in both cities were exposed to SARS at
Hotel M in Hong Kong on February 21, 2003. Patient
zero in Toronto (onset February 25, 2003) was the
matriarch of an extended, multi-generational family
who died at home on March 5 as an unrecognized case
of SARS (Poutanen et al., 2003). In addition to the five
of ten persons within her family cluster who were
affected, subsequent spread to health care workers,
patients and their families culminated in more than 200
probable cases in Toronto, most of them indigenously
acquired (Health Canada, 2003; Poutanen et al., 2003).
In contrast, patient zero in Vancouver (onset February
26, 2003) returned from traveling with his wife to an
otherwise empty abode on March 7, 2003 and was
almost immediately hospitalized (Poutanen et al., 2003).
Two of the three other probable cases in Vancouver
were imported from abroad and no secondary case of
SARS from patient zero was detected (Health Canada,
2003). Fig. 4A illustrates that, in our simulated urban
network, the difference between a patient zero with one
to five contacts (Vancouver) and a patient zero with ten
or more contacts (Toronto) can mean a doubling or
tripling in the likelihood of an epidemic.
This analysis further sheds light on the importance of

contact patterns to the fate of an epidemic. Settings with
different contact networks may share the same R0, yet
may differ significantly in their vulnerability to an
epidemic and the impact of an epidemic should one
occur. Realistic contact networks also allow detailed
quantitative assessments of intervention strategies. A
caveat to this approach is the static nature of our
models. While our calculations capture the temporal
progression of a disease through a population, we
assume that the underlying contact patterns are fixed
throughout an outbreak, a reasonable assumption if
public health control measures are implemented early
and consistently. While one can easily consider tempo-
rally changing interventions through epidemiological
simulation, we have not yet developed analytic methods
to predict the impact of such dynamics.

R0 is a valuable epidemiological quantity. It is
relatively straightforward to derive based on routinely
collected epidemiologic data and can be predictive in
homogeneous settings; it also has historically informed
effective vaccination strategies (Anderson and May,
1991; Hethcote, 2000). Yet R0 has its limits. Since R0 is a
function of both the transmissibility of a disease and the
contact patterns that underlie transmission, then mea-
suring R0 in a location where contact rates are unusually
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high will lead to an estimate that is not appropriate for
the larger community. As in the case of SARS, however,
data is often only available for a limited and unrepre-
sentative sample of the larger population.
Estimating the transmissibility T instead of R0 gives

us a way out of this difficulty. This means reporting not
just the number of new infections per case, but also the
total estimated number of contacts during the infectious
period of that case. Given the primary role of contact
tracing in infectious disease control, the relevant data is
often collected. As an alternative to such direct estimates
of T, if the underlying contact network is known, one
can estimate T based on epidemiological case counts.
We can predict the expected number of cases at each
generation of transmission as a function T (not
described here) and thus estimate T by curve fitting to
the appropriate data (Meyers et al., 2003). The
sensitivity of our epidemiological predictions to the
estimated value of T will vary by both contact network
and disease (Figs. 3–5). For example, for highly
contagious diseases (T40.2), the probability of a
large-scale epidemic is much more sensitive to minor
variations in T in the power law network than in the
Poisson and urban networks (Fig. 3). The reverse is true
for mildly contagious diseases just above the epidemic
threshold.
Unlike R0; T can be justifiably extrapolated from one

location to another even if the contact patterns are quite
disparate. We offer a simple example to illustrate the
benefits of measuring T. Suppose we measure R0 ¼ 2:7
in a hospital where the average individual comes in close
contact with 100 other individuals. Then the probability
that an individual will catch the disease from an infected
contact is just 2.7% or, in network terms, T ¼ 0:027:
Now suppose the typical individual in the general
population has 10 close contacts that could potentially
lead to the spread of a disease. If we extrapolate R0 ¼

2:7 to the general public, then we predict that, on
average, 2.7 out of every 10 contacts or 27% of contacts
become infected, whereas if we extrapolate T=0.027 to
the general public we still have only 2.7% of contacts
becoming infected, which gives us a much reduced
expectation for the spread of the disease.
We have illustrated that percolation theory allows us

to shortcut time-consuming simulations to produce
robust predictions about the size and likelihood of an
epidemic, the implications of patient zero’s contact
patterns and the initial size of an outbreak, and
optimally reducing the risk of infection at a personal
and population level. To truly reap these benefits of the
network epidemiology, we must have not only good
estimates of T but also realistic models of contact
networks. We have presented a first step towards a
realistic community network and have shown that it
departs significantly from the idealized networks pre-
viously used in network epidemiology, and yet still is
sufficiently random for the application of epidemiologi-
cal network analysis. The task of making even more
realistic contact network models of small communities,
hospitals, cities, even the global the population is
enormous, but promises a step change in our ability to
predict and effectively control the spread of infectious
disease. As we incorporate better data at these various
scales, network theory will allow us to generalize our
predictions and make better suggestions for epidemio-
logical control.
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