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Clustering and preferential attachment in growing networks
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Abstract

We study empirically the time evolution of scientific collaboration networks

in physics and biology. In these networks, two scientists are considered con-

nected if they have coauthored one or more papers together. We show that

the probability of scientists collaborating increases with the number of other

collaborators they have in common, and that the probability of a particular

scientist acquiring new collaborators increases with the number of his or her

past collaborators. These results provide experimental evidence in favor of

previously conjectured mechanisms for clustering and power-law degree dis-

tributions in networks.
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I. INTRODUCTION

Many systems take the form of networks—sets of nodes, or vertices, joined together by

links, or edges. The Internet, the power grid, social networks, food webs, distribution net-

works, and metabolic networks are commonly cited examples. Investigations of networks

within the physics community fall loosely into two categories: (1) studies of static network

structure [1–6] and dynamical processes taking place on fixed networks [7–9]; (2) stud-

ies of the dynamics of networks themselves—how and why their topology changes over

time [1,2,10–12]. It is this second category that we address here, focusing on two properties

which have received a large amount of attention in the literature—clustering and preferential

attachment.

Sociologists have long known that social networks—networks of personal acquaintances,

for example—display a high degree of transitivity, meaning that there is a heightened prob-

ability of two people being acquainted if they have one or more other acquaintances in

common. In the physics literature this phenomenon is called “clustering.” Watts and Stro-

gatz [1] measured clustering in a number of real-world networks, including both social and

physical networks, by calculating a clustering coefficient, equal to the probability that two

vertices that are both neighbors of the same third vertex will be neighbors of one another.

They found that in many networks the clustering coefficient is much higher than its expected

baseline value, which is set by comparison with a random graph.

It has also been pointed out by a number of authors [3–5,13], particularly in studies

of the Internet and the World-Wide Web, that real-world networks have highly skewed

distributions of vertex degree. (The degree of a vertex is the number of other vertices to

which it is connected.) In many cases, the degree distribution is found to follow a power

law, a particularly telling functional form which often signifies an underlying process worthy

of study.

Explanations have been put forward for both of these observations. In the case of cluster-

ing, it is conjectured that pairs of individuals with a common acquaintance (or several) are
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likely to become acquainted themselves through introduction by their mutual friend(s) [2].

In the case of degree distributions, it is conjectured that, for a variety of reasons, vertices

accumulate new edges in proportion to the number they have already, leading to a multiplica-

tive process which is known to give power-law distributions [10–12]. This process is often

called “preferential attachment.” While both of these explanations are, in some contexts

at least, perfectly plausible, there has been little if any empirical evidence in their favor—a

glaring problem for two conjectures which have formed the foundation of a substantial body

of research. The principal reason for this has been the lack of good time-resolved data on

how networks grow.

In order to test a conjecture such as “people with many common friends are more likely

to become acquainted than those with few or none,” one needs to watch a network grow

and see if the process described by the conjecture does indeed happen with significantly

heightened frequency. Although data on the structure of networks are quite plentiful, data

on how they grow have proved harder to come by. Recently, however, the author conducted

some empirical studies of collaboration networks of scientists: networks in which pairs of

scientists are linked together if they have coauthored one or more papers [14,15]. These

collaboration networks are true social networks, since two scientists who have coauthored a

paper will normally be acquainted with one another. (There are occasional exceptions—see

Ref. [15].) They are also well documented, since there exist extensive machine-readable

bibliographies of the scientific literature. What’s more, as Barabási and co-workers have

recently pointed out [16], these networks have excellent time resolution as well, because

each paper comes with a publication or receipt date. As we now show, this allows us to test

directly the clustering and preferential attachment conjectures.

In this study we look at collaboration networks derived from two bibliographic sources:

1. The Los Alamos E-print Archive, a database of preprints in physics, self-submitted by

their authors;

2. Medline, a database of published papers in biology and medicine, whose entries are
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professionally maintained by the National Institutes of Health.

While neither of these databases records the exact publication date of the papers they con-

tain, both include a record of the sequence in which papers were added to the database.

This is enough for our purposes: all that we need for our calculations is the order of the

collaborations undertaken by each author in the database, and the order of the papers is a

reasonable proxy for this—probably not correct in every case, but assumed to be correct in

most. Two other databases that we studied previously [14] do not contain enough informa-

tion to establish order of collaborations, recording publication or database entry of papers

to the nearest year only. This creates ambiguity since many authors produce more than one

paper a year, and so we did not use these databases for the current study.

Authors are identified by their full surname and all initials. As discussed previ-

ously [14,15], an author who gives their name differently on different papers may be confused

for two people by this measure, while two people with identical surnames and initials may

be confused for one. The error in the number of vertices in the network as a result of these

problems was found to be on the order of 5%.

We study a six-year interval of time for both databases. (For the Los Alamos Archive

we use 1995 to 2000 inclusive, for Medline 1994 to 1999.) Over this period the Los Alamos

Archive records 58 342 distinct names, and Medline 1 648 660. In each of the calculations

presented here, we use the first five of the six years to construct a collaboration network, and

then examine how that network further changes in the remaining one year. Our assumption

is that any scientist who is currently active will produce at least one paper during the initial

five year period, as will any currently active collaboration between a pair of scientists, so

that the network we have at the end of that period will be essentially complete. New vertices

added in the sixth year represent, it is assumed, new individuals entering the field, and new

edges represent genuine new collaborations. Of course there are some exceptions, such as

established scientists who for one reason or another fail to publish anything for five years

and then produce a paper in the sixth, and these will be misrepresented in our calculations.
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We assume these are a small fraction of the total. There will also be some scientists who

leave the field during the six years, to go into different fields or professions, or because

they retire. We make no attempt to guess which individuals leave in this way: everyone

whose name appears even once is considered a member of the network for the entire period

of study thereafter. This will introduce some error into our calculations. However, it is

straightforward to convince oneself that the correlations we are looking for in the present

study will only be weakened by this error, not strengthened, so there is no danger of false

positive results.

II. CLUSTERING

Let us consider first the question of clustering in the network. We already know that the

clustering coefficient is high in our collaboration networks—0.45 for the Los Alamos Archive

and 0.088 for Medline over a five-year period [14]. The calculation presented here improves

on these results in two ways. First, the simple clustering coefficient includes contributions

from collaborations between authors which preceded their collaborations with any mutual

acquaintances. By using time-resolved data we can exclude these collaborations from our

measure of clustering. Second, we can determine whether the probability of two individuals

collaborating increases as the number m of their previous mutual acquaintances goes up. If

this is the case, then it suggests that the standard explanation of clustering—introduction

of future collaborators to one another by common previous acquaintances—is correct, the

probability of such an introduction presumably increasing with m. Other explanations, such

as the institutional explanation proposed in Ref. [15], would be harder to justify.

Measuring the probability of collaboration between authors as a function of their number

of mutual acquaintances is complicated by the fact that both the size of the graph and the

numbers of mutual acquaintances themselves are changing over time. We consider the

probability Pm(t) that the two scientists connected by a link added at time t have m mutual

acquaintances. (Time is somewhat arbitrary here. It can be real time, but it can also be
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any other function which increases monotonically as papers are added to the database—only

the order of the papers matters, not their precise timing. The links created by a paper with

three or more authors are all considered to be added at the same instant.) We have

Pm(t) =
nm(t)

1

2
N(t)[N(t) − 1]

Rm, (1)

where nm(t) is the number of pairs with m mutual acquaintances immediately before the

addition of the paper at time t, N(t) is the current number of authors in the network, and

Rm is the relative probability of collaboration between the two scientists connected by this

link, i.e., the ratio between the actual probability of their collaborating and the probability

of their collaborating in a network in which presence of mutual acquaintances makes no

difference. We assume that the probability that two scientists with a given value of m

collaborate at a particular time does not depend on the number of other scientists with that

value of m, or on the size of the database in which the paper they write is archived, and

hence that Rm is independent of t [17]. This makes it a suitable quantity to measure to test

our clustering hypothesis. In a world with no clustering, we would have Rm = 1 for all m;

in a world in which clustering arises through introductions, as above, it should increase with

increasing m.

To measure Rm, one simply constructs a histogram of the value of m for each link added

to the graph in which each sample is weighted by a factor of 1

2
N(t)[N(t) − 1]/nm(t). In

Fig. 1 we do this for the network of the Los Alamos Archive. As discussed above, we

evaluate Rm for the last of our six years only, the previous five being used to establish the

initial network for the calculation. As the figure shows, Rm does indeed increase with m,

and is much greater than 1 for all m > 0. A pair of scientists who have five mutual previous

collaborators, for instance, are about twice as likely to collaborate as a pair with only two,

and about 200 times as likely as a pair with none. Rm increases roughly linearly for small

m, perhaps indicating that each common collaborator of a pair of scientists is equally likely

to introduce them. The curve appears to flatten off for higher m, although the data become

poor for m >
∼ 8, since the number of pairs of authors with this many common collaborators
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Figure 1 Probability of collaboration between scientists in the Los Alamos

Archive as a function of their number of mutual previous collaborators. The dotted

line is the best fit of the form (2). Inset: the relative probability of collaboration

as a function of number of previous collaborations of the same scientists, for the

Los Alamos Archive (circles) and Medline (squares). The dotted lines are the best

straight-line fits to the data. The data for Medline have been divided by a factor of

50 vertically to improve the clarity of the figure.

who have not already collaborated themselves is very small.

As well as supporting the standard explanation of clustering in social networks, our

data for Rm might prove useful for modeling purposes. For example, in some models of

the growth of social networks [2,18], a particular form is assumed for the probability of

individuals becoming acquainted, as a function of their number of mutual friends. Fig. 1

provides a rough empirical guide for what that functional form should be. In the figure we

give a fit to the data of the form

Rm = A − Be−m/m0 , (2)

where A, B, and m0 are constants. This form appears to fit reasonably well and might be
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suitable for use in the models.

III. REPEAT COLLABORATIONS

In the calculation described above, we included only newly appearing edges in the net-

work. Repeat collaborations between authors who had collaborated before were excluded;

we assume that such collaborations are more likely to be a result of previous acquaintance

than the result of network structure. This however raises another interesting question: does

probability of collaboration also increase with the number of times one has collaborated

before? The answer is yes, as shown in the inset of Fig. 1, which measures the relative

probability Rn (defined similarly to Rm above) of two coauthors collaborating if they have

collaborated n times previously within the period covered by our study. If collaboration

probability were independent of previous collaboration, we would have Rn = 1 for all n, but

as the figure shows, Rn increases roughly linearly with n, indicating that number of past

collaborations is a good indicator of the probability of future collaboration. However, one

must bear in mind that this calculation may be influenced by varying frequencies of collabo-

ration: regular collaborators who publish often will have more publications in the database

as well as greater likelihood of publishing again in the last of our six years, producing a

correlation just as seen in the figure. To eliminate this effect one would have to look at data

for a longer period of time and compare collaborators with similar numbers of publications

but different publication rates. Unfortunately, this is not practical with the data available

to us at present.

IV. PREFERENTIAL ATTACHMENT

We can also use our data to test for preferential attachment in the collaboration network.

Barabási et al. [16] have previously looked for preferential attachment in two collaboration

networks derived from data for publications in mathematics and neuroscience. Papers in

their databases were dated only to the nearest year, making the order in which collaborations
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occur uncertain, as discussed above. To get around this, they restricted themselves to

measuring the number of new papers each author in the network published in a single year,

as a function of number of previous papers. This should be an increasing function if there

is preferential attachment, or constant otherwise. Their results show a clear increase and

hence favor preferential attachment.

Using our data we can measure preferential attachment in our networks directly by a

method similar to the one we used to measure clustering above. We define a relative prob-

ability Rk that a link added at time t connects to a vertex representing a scientist who has

collaborated previously with k others. By analogy with Eq. (1), the corresponding absolute

probability Pk(t) that this link connects to a vertex with degree k is Pk(t) = Rknk(t)/N(t),

where nk(t) is the number of vertices with degree k immediately before addition of this link.

Then Rk can be estimated by making a histogram of the degrees k of the vertices to which

each link is added in which each sample is weighted by a factor of N(t)/nk(t). If there is

no preferential attachment, Rk should equal 1 for all k. If there is preferential attachment,

it should be an increasing function of k, and the widely held belief is that it should in fact

increase linearly with k. If it increases linearly, then the resulting degree distribution of the

network will be a power law [10–12].

In Fig. 2 and its inset we show empirical results for Rk for the databases studied here.

As the figure shows, the relative probability is in both cases close to linear in the initial

part of the curve, but falls off once k becomes large. This is understandable: no one can

collaborate with an infinite number of people in a finite period of time, so at some point R(k)

must start to decrease. This point appears to be around 150 collaborators in physics and

600 in biomedicine. Interestingly, these figures coincide roughly with the points at which

the observed degree distribution in these networks starts to deviate from the power-law

form [15], lending support to the theory that preferential attachment is the origin of the

power law.

Our results differ somewhat from those of Barabási et al. [16], who found preferential

attachment for their networks, but did not find linear behavior. In the language used here,
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Figure 2 The relative probability that a new edge in the collaboration network

will connect to a vertex of given degree. The main figure shows data from the

Medline database, the inset data from the Los Alamos E-print Archive.

their finding was that R(k) ∼ kν , with ν ≃ 0.8. This form does not fit our data very

well. A power-law fit to the increasing part of R(k) for our data gives ν = 1.04 ± 0.04 for

Medline and ν = 0.89±0.98 for the Los Alamos Archive, both of which are compatible with

the conjecture of linear preferential attachment, while only the latter is compatible with

ν = 0.8. In practice however, this difference may have little effect. As Krapivsky et al. [11]

have shown, sub-linear preferential attachment gives rise to a stretched exponential cutoff

in the resulting degree distribution, but we already have a similar cutoff in our distribution

as a result of the deviation of R(k) from linear behavior for large enough k.
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V. CONCLUSIONS

To conclude, we have measured the probability of collaboration between scientists in

two collaboration networks as a function of their number of mutual acquaintances in the

network, their number of previous collaborations, and their number of previous collaborators.

We find that the probability of collaboration is strongly positively correlated with each of

these, and for the latter two that the relationship is close to linear over a large part of its

range. These results lend strong support to previously conjectured theories about the way

in which networks grow.
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