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PROTEIN CHIPS

Similar to cDNA microarrays,
this evolving technology
involves arraying a genomic set
of proteins on a solid surface
without denaturing them. The
proteins are arrayed at a high
enough density for the
detection of activity, binding
to lipids and so on.
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NETWORK BIOLOGY:
UNDERSTANDING THE CELL'S
FUNCTIONAL ORGANIZATION

Albert-Ldszlé Barabdsi* ¢& Zoltdn N. Oltvai*

A key aim of postgenomic biomedical research is to systematically catalogue all molecules and
their interactions within a living cell. There is a clear need to understand how these molecules and
the interactions between them determine the function of this enormously complex machinery, both
in isolation and when surrounded by other cells. Rapid advances in network biology indicate that
cellular networks are governed by universal laws and offer a new conceptual framework that could
potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

Reductionism, which has dominated biological research
for over a century, has provided a wealth of knowledge
about individual cellular components and their func-
tions. Despite its enormous success, it is increasingly
clear that a discrete biological function can only rarely
be attributed to an individual molecule. Instead, most
biological characteristics arise from complex interac-
tions between the cell’s numerous constituents, such as
proteins, DNA, RNA and small molecules'-®. Therefore,
akey challenge for biology in the twenty-first century is to
understand the structure and the dynamics of the com-
plex intercellular web of interactions that contribute to
the structure and function of a living cell.

The development of high-throughput data-collection
techniques, as epitomized by the widespread use of
microarrays, allows for the simultaneous interrogation
of the status of a cell’s components at any given time.
In turn, new technology platforms, such as pROTEIN CHIPS
or semi-automated YEAST TWO-HYBRID SCREENS, help to deter-
mine how and when these molecules interact with each
other. Various types of interaction webs, or networks,
(including protein—protein interaction, metabolic, sig-
nalling and transcription-regulatory networks) emerge
from the sum of these interactions. None of these net-
works are independent, instead they form a ‘network of
networks’ that is responsible for the behaviour of the
cell. A major challenge of contemporary biology is to
embark on an integrated theoretical and experimental

programme to map out, understand and model in quan-
tifiable terms the topological and dynamic properties of the
various networks that control the behaviour of the cell.

Help along the way is provided by the rapidly develop-
ing theory of complex networks that, in the past few
years, has made advances towards uncovering the orga-
nizing principles that govern the formation and evolution
of various complex technological and social networks’'2.
This research is already making an impact on cell biology.
It has led to the realization that the architectural features
of molecular interaction networks within a cell are shared
to alarge degree by other complex systems, such as the
Internet, computer chips and society. This unexpected
universality indicates that similar laws may govern most
complex networks in nature, which allows the expertise
from large and well-mapped non-biological systems to be
used to characterize the intricate interwoven relationships
that govern cellular functions.

In this review, we show that the quantifiable tools of
network theory offer unforeseen possibilities to under-
stand the cell’s internal organization and evolution,
fundamentally altering our view of cell biology. The
emerging results are forcing the realization that, not-
withstanding the importance of individual molecules,
cellular function is a contextual attribute of strict
and quantifiable patterns of interactions between the
myriad of cellular constituents. Although uncovering
the generic organizing principles of cellular networks
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YEAST TWO-HYBRID SCREEN

A genetic approach for the
identification of potential
protein—protein interactions.
Protein X is fused to the
site-specific DNA-binding
domain of a transcription
factor and protein Y to its
transcriptional-activation
domain — interaction between
the proteins reconstitutes
transcription-factor activity and
leads to expression of reporter
genes with recognition sites for
the DNA-binding domain.

Box 1 | Network measures

Network biology offers a quantifiable description of the networks a Undirected network
that characterize various biological systems. Here we define the
most basic network measures that allow us to compare and
characterize different complex networks.

Degree

The most elementary characteristic of a node is its degree (or
connectivity), k, which tells us how many links the node has to other
nodes. For example, in the undirected network shown in part a of
the figure, node A has degree k= 5. In networks in which each link
has a selected direction (see figure, part b) there is an incoming
degree, k_, which denotes the number of links that point to a node,
and an outgoing degree, k_ , which denotes the number of links that
start from it. For example, node A in part b of the figure has k_=4
and k= 1. An undirected network with N nodes and L links is

characterized by an average degree <k>=2L/N (where<>denotes b Directed network
the average).

Degree distribution

The degree distribution, P(k), gives the probability that a selected
node has exactly klinks. P(k) is obtained by counting the number
ofnodes N(k) with k= 1,2... links and dividing by the total
number of nodes N. The degree distribution allows us to distinguish
between different classes of networks. For example, a peaked degree

distribution, as seen in a random network (BOX 2), indicates that the c A

system has a characteristic degree and that there are no highly

connected nodes (which are also known as hubs). By contrast, a kn =4 D

power-law degree distribution indicates that a few hubs hold Koyt =1 E

together numerous small nodes (BOX 2).

Scale-free networks and the degree exponent

Most biological networks are scale-free, which means that their degree distribution approximates a power law, P(k) ~ k7,
where y is the degree exponent and ~ indicates ‘proportional to. The value of y determines many properties of the
system. The smaller the value of y, the more important the role of the hubs is in the network. Whereas for y>3 the hubs
are not relevant, for 2> y>3 there is a hierarchy of hubs, with the most connected hub being in contact with a small
fraction of all nodes, and for y = 2 a hub-and-spoke network emerges, with the largest hub being in contact with a large
fraction of all nodes. In general, the unusual properties of scale-free networks are valid only for y<3, when the dispersion
of the P(k) distribution, which is defined as 6? = <k*>—<k>? increases with the number of nodes (that is, o diverges),
resulting in a series of unexpected features, such as a high degree of robustness against accidental node failures’". For
y>3, however, most unusual features are absent, and in many respects the scale-free network behaves like a random one.

Shortest path and mean path length

Distance in networks is measured with the path length, which tells us how many links we need to pass through to travel
between two nodes. As there are many alternative paths between two nodes, the shortest path — the path with the
smallest number of links between the selected nodes — has a special role. In directed networks, the distance €, , from
node A to node B is often different from the distance (B " from B to A. For example, in part b of the figure, fB A= L
whereas €, , = 3. Often there is no direct path between two nodes. As shown in part b of the figure, although there is a
path from C to A, there is no path from A to C. The mean path length, <€ >, represents the average over the shortest
paths between all pairs of nodes and offers a measure of a network’s overall navigability.

Clustering coefficient
In many networks, if node A is connected to B, and B is connected to C, then it is highly probable that A also has a direct
link to C. This phenomenon can be quantified using the clustering coefficient”® C, = 2n,/k(k-1), where n, is the number
of links connecting the k neighbours of node I to each other. In other words, C, gives the number of ‘triangles’ (see BOX 3)
that go through node I, whereas k (k —1)/2 is the total number of triangles that could pass through node I, should all of
node I’s neighbours be connected to each other. For example, only one pair of node A’s five neighbours in part a of the
figure are linked together (B and C), which gives #, = 1 and C, = 2/20. By contrast, none of node F’s neighbours link to
each other, giving C, = 0. The average clustering coefficient, <C>, characterizes the overall tendency of nodes to form
clusters or groups. An important measure of the network’s structure is the function C(k), which is defined as the average
clustering coefficient of all nodes with klinks. For many real networks C(k) ~ k!, which is an indication of a network’s
hierarchical character’’>>® (see BOX 2).

The average degree <k>, average path length < >and average clustering coefficient <C> depend on the number of
nodes and links (N and L) in the network. By contrast, the P(k) and C(k) functions are independent of the network’s size
and they therefore capture a network’s generic features, which allows them to be used to classify various networks.

102 | FEBRUARY 2004 | VOLUME 5 www.nature.com/reviews/genetics



REVIEWS

is fundamental to our understanding of the cell as a sys-
tem, it also needs to develop relevance for the experimen-
tal biologist, helping to elucidate the role of individual
molecules in various cellular processes. Therefore, we
explore the specific biological details and the evolutionary
origins that contribute to the formation of cellular net-
works, and the impact of the network structure on exper-
imentally observable function and behavioural features.
Our goal is to help understand the large-scale characteris-
tics of cellular networks, complementing recent excellent
reviews on the function of small genetic circuits (for
example, see REFS 2,6). We also look to the future and the
uncharted territories for which these approaches might
bear further fruits.

Basic network nomenclature

The behaviour of most complex systems, from the cell to
the Internet, emerges from the orchestrated activity of
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many components that interact with each other through
pairwise interactions. At a highly abstract level, the com-
ponents can be reduced to a series of nodes that are con-
nected to each other by links, with each link representing
the interactions between two components. The nodes
and links together form a network, or, in more formal
mathematical language, a graph (BOX 1).

Establishing the identity of various cellular networks
is not trivial. Physical interactions between molecules,
such as protein—protein, protein—nucleic-acid and
protein—metabolite interactions, can easily be conceptu-
alized using the node-link nomenclature. Nevertheless,
more complex functional interactions can also be con-
sidered within this representation. For example, small-
molecule substrates can be envisioned as the nodes of a
metabolic network and the links as the enzyme-catal-
ysed reactions that transform one metabolite into
another (FIG. 1a—c).
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Figure 1 | Characterizing metabolic networks. To study the network characteristics of the metabolism a graph theoretic description
needs to be established. Here, the graph theoretic description for a simple pathway (catalysed by Mg?*-dependant enzymes) is
ilustrated (a). In the most abstract approach (b) all interacting metabolites are considered equally. The links between nodes represent
reactions that interconvert one substrate into another. For many biological applications it is useful to ignore co-factors, such as the high-
energy-phosphate donor ATP, which results in a second type of mapping () that connects only the main source metabolites to the main
products. d | The degree distribution, P(K) of the metabolic network illustrates its scale-free topology'. e | The scaling of the clustering
coefficient C(k) with the degree k illustrates the hierarchical architecture of metabolism® (The data shown in d and e represent an
average over 43 organisms'®>). f | The flux distribution in the central metabolism of Escherichia coli follows a power law, which indicates
that most reactions have small metabolic flux, whereas a few reactions, with high fluxes, carry most of the metabolic activity”". This plot is
based on data that was collected by Emmeriing et al.'%. It should be noted that on all three plots the axis is logarithmic and a straight line
on such log-log plots indicates a power-law scaling. CTP, cytidine triphosphate; GLC, aldo-hexose glucose; UDP, uridine diphosphate;
UMP, uridine monophosphate; UTP, uridine triphosphate.
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mathematical properties of random networks'. Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other (80X 2). The most remarkable property of the model
is its ‘democratic’ or uniform character, characterizing the
degree, or connectivity (k; BOX 1), of the individual nodes.
Because, in the model, the links are placed randomly
among the nodes, it is expected that some nodes collect
only a few links whereas others collect many more. In a
random network, the nodes degrees follow a Poisson
0 distribution, which indicates that most nodes have
roughly the same number of links, approximately equal
to the network’s average degree, <k> (where <> denotes
—= the average); nodes that have significantly more or less
links than <k> are absent or very rare (BOX 2).
Despite its elegance, a series of recent findings indi-
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e N cate that the .random net\.vork model cannot explain
o \ the topological properties of real networks. The
o . deviations from the random model have several key

o signatures, the most striking being the finding that, in
_,/ contrast to the Poisson degree distribution, for many

social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links
follows P(k) ~ k=, where v is the degree exponent, with
its value for most networks being between 2 and 3
(REE 15). Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links. A few nodes with a very
large number of links, which are often called hubs, hold
these nodes together. Networks with a power degree
distribution are called scale-free'®, a name that is rooted
in statistical physics literature. It indicates the absence
of a typical node in the network (one that could be
used to characterize the rest of the nodes). This is in
strong contrast to random networks, for which the

Figure 2 | Yeast protein interaction network. A map of protein—protein interactions'® in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements?, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 ©
Macmillan Magazines Ltd.

Depending on the nature of the interactions, net-
works can be directed or undirected. In directed

networks, the interaction between any two nodes has a
well-defined direction, which represents, for example,
the direction of material flow from a substrate to a
product in a metabolic reaction, or the direction of
information flow from a transcription factor to the gene
that it regulates. In undirected networks, the links do
not have an assigned direction. For example, in protein
interaction networks (FIG.2) a link represents a mutual
binding relationship: if protein A binds to protein B,
then protein B also binds to protein A.

Architectural features of cellular networks

From random to scale-free networks. Probably the most
important discovery of network theory was the realiza-
tion that despite the remarkable diversity of networks
in nature, their architecture is governed by a few simple
principles that are common to most networks of major
scientific and technological interest™'’. For decades
graph theory — the field of mathematics that deals
with the mathematical foundations of networks —
modelled complex networks either as regular objects,
such as a square or a diamond lattice, or as completely
random network". This approach was rooted in the
influential work of two mathematicians, Paul Erdos,
and Alfréd Rényi, who in 1960 initiated the study of the

degree of all nodes is in the vicinity of the average
degree, which could be considered typical. However,
scale-free networks could easily be called scale-rich as
well, as their main feature is the coexistence of nodes of
widely different degrees (scales), from nodes with one
or two links to major hubs.

Cellular networks are scale-free. An important develop-
ment in our understanding of the cellular network
architecture was the finding that most networks within
the cell approximate a scale-free topology. The first evi-
dence came from the analysis of metabolism, in which
the nodes are metabolites and the links represent
enzyme-catalysed biochemical reactions (FIG. 1). As many
of the reactions are irreversible, metabolic networks are
directed. So, for each metabolite an ‘in’ and an ‘out’
degree (B0OX 1) can be assigned that denotes the number
of reactions that produce or consume it, respectively.
The analysis of the metabolic networks of 43 different
organisms from all three domains of life (eukaryotes,
bacteria, and archaea) indicates that the cellular metabo-
lism has a scale-free topology, in which most metabolic
substrates participate in only one or two reactions, but a
few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs'®".
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Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
characteristics. There are three models that had a direct impact on our understanding of biological networks.

Random networks

The Erdés—Rényi (ER) model of a random network'* (see figure, part A) starts with N nodes and connects each pair of nodes with probability p,
which creates a graph with approximately pN(N-1)/2 randomly placed links (see figure, part Aa). The node degrees follow a Poisson distribution
(see figure, part Ab), which indicates that most nodes have approximately the same number of links (close to the average degree <k>). The tail
(high kregion) of the degree distribution P(k) decreases exponentially, which indicates that nodes that significantly deviate from the average are
extremely rare. The clustering coefficient is independent of a node’s degree, so C(k) appears as a horizontal line if plotted as a function of k (see
figure, part Ac). The mean path length is proportional to the logarithm of the network size, I ~ log N, which indicates that it is characterized by the
small-world property.

Scale-free networks

Scale-free networks (see figure, part B) are characterized by a power-law degree distribution; the probability that a node has klinks follows

P(k) ~ k™, where y is the degree exponent. The probability that a node is highly connected is statistically more significant than in a random graph,
the network’s properties often being determined by a relatively small number of highly connected nodes that are known as hubs (see figure, part
Ba; blue nodes). In the Barabasi—Albert model of a scale-free network!', at each time point a node with M links is added to the network, which
connects to an already existing node I with probability IT = k/Z k, where k is the degree of node I (FIG. 3) and ] is the index denoting the sum over
network nodes. The network that is generated by this growth process has a power-law degree distribution that is characterized by the degree
exponenty = 3. Such distributions are seen as a straight line on a log—log plot (see figure, part Bb). The network that is created by the
Barabési—Albert model does not have an inherent modularity, so C(k) is independent of k (see figure, part Bc). Scale-free networks with degree
exponents 2<y<3, a range that is observed in most biological and non-biological networks, are ultra-small****, with the average path length
following € ~ log log N, which is significantly shorter than log N that characterizes random small-world networks.

Hierarchical networks
To account for the coexistence of modularity, local clustering and scale-free topology in many real systems it has to be assumed that clusters
combine in an iterative manner, generating a hierarchical network*>* (see figure, part C). The starting point of this construction is a small cluster
of four densely linked nodes (see the four central nodes in figure, part Ca). Next, three replicas of this module are generated and the three external
nodes of the replicated clusters

connected to the central node of

the old cluster, which produces a

largfe 16—n0d<? module. Three Aa Ba Ca
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
anetwork that has a power-law

A Random network B Scale-free network C Hierarchical network
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-1 on alog-log plot (see figure, Ac Bc k Ce k

part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the & o1
different highly clustered
neighbourhoods being
maintained by a few hubs
(see figure, part Ca).
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As for direct physical interactions, several recent
publications indicate that protein—protein interac-
tions in diverse eukaryotic species also have the fea-
tures of a scale-free network!®-2, This is apparent in
FIG. 2, which shows the protein interaction map of the
yeast Saccharomyces cerevisiae as predicted by systematic
two-hybrid screens®**. Whereas most proteins partici-
pate in only a few interactions, a few participate in
dozens — a typical feature of scale-free networks.

Further examples of scale-free organization include
genetic regulatory networks, in which the nodes are
individual genes and the links are derived from the
expression correlations that are based on microarray
data®?%, or protein domain networks that are con-
structed on the basis of protein domain interactions**.
However, not all networks within the cell are scale-free.
For example, the transcription regulatory networks of
S. cerevisiae and Escherichia coli offer an interesting
example of mixed scale-free and exponential character-
istics. Indeed, the distribution that captures how many
different genes a transcription factor interacts with
follows a power law, which is a signature of a scale-free
network. This indicates that most transcription factors
regulate only a few genes, but a few general transcription
factors interact with many genes. However, the incom-
ing degree distribution, which tells us how many differ-
ent transcription factors interact with a given gene, is
best approximated by an exponential, which indicates
that most genes are regulated by one to three transcrip-
tion factors . So, the key message is the recognition
that cellular networks have a disproportionate number
of highly connected nodes. Although the mathematical
definition of a scale-free network requires us to establish
that the degree distribution follows a power law, which
is difficult in networks with too few nodes, the presence
of hubs seems to be a general feature of all cellular net-
works, from regulatory webs to the p53 module®'. These
hubs fundamentally determine the network’s behaviour
(see below).

Small-world effect and assortativity. A common feature
of all complex networks is that any two nodes can be
connected with a path of a few links only. This ‘small-
world effect, which was originally observed in a social
study?®, has been subsequently shown in several systems,
from neural networks® to the World Wide Web.
Although the small-world effect is a property of random
networks, scale-free networks are ultra small** — their
path length is much shorter than predicted by the
small-world effect (Box 2). Within the cell, this ultra-
small-world effect was first documented for metabo-
lism, where paths of only three to four reactions can link
most pairs of metabolites'®!”. This short path length
indicates that local perturbations in metabolite concen-
trations could reach the whole network very quickly.
Interestingly, the evolutionarily reduced metabolic net-
work of a parasitic bacterium has the same mean path
length as the highly developed network of a large multi-
cellular organism'¢, which indicates that there are evolu-
tionary mechanisms that have maintained the average
path length during evolution.

FIGURE 2 illustrates the disassortative nature of cellu-
lar networks. It indicates, for example, that, in protein
interaction networks, highly connected nodes (hubs)
avoid linking directly to each other and instead connect
to proteins with only a few interactions®. In contrast to
the assortative nature of social networks, in which well-
connected people tend to know each other, disassorta-
tivity seems to be a property of all biological (metabolic,
protein interaction) and technological (World Wide
Web, Internet) networks*—#. Although the small- and
ultra-small-world property of complex networks is
mathematically well understood***, the origin of disas-
sortativity in cellular networks remains unexplained.

Evolutionary origin of scale-free networks. The ubiq-
uity of scale-free networks and hubs in technological,
biological and social systems requires an explanation.
It has emerged that two fundamental processes have a
key role in the development of real networks'>. First,
most networks are the result of a growth process, dur-
ing which new nodes join the system over an extended
time period. This is the case for the World Wide Web,
which has grown from 1 to more than 3-billion web
pages over a 10-year period. Second, nodes prefer to
connect to nodes that already have many links, a
process that is known as preferential attachment. For
example, on the World Wide Web we are more familiar
with the highly connected web pages, and therefore are
more likely to link to them. Growth and preferential
attachment are jointly responsible for the emergence of
the scale-free property in complex networks (FIG. 3a).
Indeed, if a node has many links, new nodes will tend
to connect to it with a higher probability. This node
will therefore gain new links at a higher rate than its
less connected peers and will turn into a hub®.
Growth and preferential attachment have a com-
mon origin in protein networks that is probably
rooted in gene duplication®*. Duplicated genes pro-
duce identical proteins that interact with the same
protein partners (FIG. 3). Therefore, each protein that is
in contact with a duplicated protein gains an extra
link. Highly connected proteins have a natural advan-
tage: it is not that they are more (or less) likely to be
duplicated, but they are more likely to have a link to a
duplicated protein than their weakly connected cous-
ins, and therefore they are more likely to gain new links
if a randomly selected protein is duplicated. This bias
represents a subtle version of preferential attachment.
The most important feature of this explanation is that
it traces the origin of the scale-free topology back to a
well-known biological mechanism — gene dupli-
cation. Although the role of gene duplication has been
shown only for protein interaction networks, it proba-
bly explains, with appropriate adjustments, the emer-
gence of the scale-free features in the regulatory and
metabolic networks as well. It should be noted that,
although the models show beyond doubt that gene
duplication can lead to a scale-free topology, there is
no direct proof that this mechanism is the only one,
or the one that generates the observed power laws in
cellular networks*. However, as gene duplication is a
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major engineer of the genomic landscape, it is likely to
be a key mechanism for generating the scale-free
topology.

Two further results offer direct evidence that net-
work growth is responsible for the observed topological
features. The scale-free model (80X 2) predicts that the
nodes that appeared early in the history of the network
are the most connected ones'. Indeed, an inspection of
the metabolic hubs indicates that the remnants of the
RNA world, such as coenzyme A, NAD and GTP, are
among the most connected substrates of the metabolic
network, as are elements of some of the most ancient
metabolic pathways, such as glycolysis and the tricar-
boxylic acid cycle'. In the context of the protein interac-
tion networks, cross-genome comparisons have found
that, on average, the evolutionarily older proteins have
more links to other proteins than their younger coun-
terparts*>*. This offers direct empirical evidence for
preferential attachment.

Motifs, modules and hierarchical networks
Cellular functions are likely to be carried out in a highly
modular manner'. In general, modularity refers to a
group of physically or functionally linked molecules
(nodes) that work together to achieve a (relatively) dis-
tinct function"***. Modules are seen in many systems,
for example, circles of friends in social networks or web-
sites that are devoted to similar topics on the World
Wide Web. Similarly, in many complex engineered sys-
tems, from a modern aircraft to a computer chip, a
highly modular structure is a fundamental design
attribute.

Biology is full of examples of modularity. Relatively
invariant protein—protein and protein—-RNA complexes
(physical modules) are at the core of many basic biolog-
ical functions, from nucleic-acid synthesis to protein
degradation®. Similarly, temporally coregulated groups
of molecules are known to govern various stages of the
cell cycle®-!, or to convey extracellular signals in bacter-
ial chemotaxis or the yeast pheromone response path-
way. In fact, most molecules in a cell are either part of an
intracellular complex with modular activity, such as the
ribosome, or they participate in an extended (func-
tional) module as a temporally regulated element of a
relatively distinct process (for example, signal amplifica-
tion in a signalling pathway*?).

To address the modularity of networks, tools and
measures need to be developed that will allow us not
only to establish if a network is modular, but also to
explicitly identify the modules and their relationships in
a given network.

High clustering in cellular networks. In a network repre-
sentation, a module (or cluster) appears as a highly
interconnected group of nodes. Each module can be
reduced to a set of triangles (BOX 1); a high density of tri-
angles is reflected by the clustering coefficient, C (REE 33),
the signature of a network’s potential modularity
(BOX 1). In the absence of modularity, the clustering coef-
ficient of the real and the randomized network are com-
parable. The average clustering coefficient, <C>, of

Proteins

Before duplication

After duplication

Proteins

Figure 3 | The origin of the scale-free topology and hubs
in biological networks. The origin of the scale-free topology
in complex networks can be reduced to two basic
mechanisms: growth and preferential attachment. Growth
means that the network emerges through the subsequent
addition of new nodes, such as the new red node that is added
to the network that is shown in part a. Preferential attachment
means that new nodes prefer to link to more connected nodes.
For example, the probability that the red node will connect to
node 1 is twice as large as connecting to node 2, as the
degree of node 1 (k,=4) is twice the degree of node 2 (k,=2).
Growth and preferential attachment generate hubs through a
‘rich-gets-richer’ mechanism: the more connected a node is,
the more likely it is that new nodes will link to it, which allows
the highly connected nodes to acquire new links faster than
their less connected peers. In protein interaction networks,
scale-free topology seems to have its origin in gene
duplication. Part b shows a small protein interaction network
(blue) and the genes that encode the proteins (green). When
cells divide, occasionally one or several genes are copied twice
into the offspring’s genome (illustrated by the green and red
circles). This induces growth in the protein interaction network
because now we have an extra gene that encodes a new
protein (red circle). The new protein has the same structure as
the old one, so they both interact with the same proteins.
Ultimately, the proteins that interacted with the original
duplicated protein will each gain a new interaction to the new
protein. Therefore proteins with a large number of interactions
tend to gain links more often, as it is more likely that they
interact with the protein that has been duplicated. This is a
mechanism that generates preferential attachment in cellular
networks. Indeed, in the example that is shown in part b it does
not matter which gene is duplicated, the most connected
central protein (hub) gains one interaction. In contrast, the
square, which has only one link, gains a new link only if the hub
is duplicated.
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most real networks is significantly larger than that of a
random network of equivalent size and degree distrib-
ution®. The metabolic network offers striking evi-
dence for this: <C> is independent of the network
size, in contrast to a module-free scale-free network,
for which <C> decreases™. The cellular networks that
have been studied so far, including protein interaction"
and protein domain? networks, have a high <C>,
which indicates that high clustering is a generic feature
of biological networks.

Motifs are elementary units of cellular networks. The
high clustering indicates that networks are locally
‘sprinkled’ with various subgraphs of highly inter-
linked groups of nodes, which is a condition for the
emergence of isolated functional modules. Subgraphs
capture specific patterns of interconnections that
characterize a given network at the local level (BOX 3).
However, not all subgraphs are equally significant in
real networks, as indicated by a series of recent obser-
vations?**. To understand this, consider the highly
regular square lattice: an inspection of its subgraphs
would find very many squares and no triangles (BOX 3).
It could (correctly) be concluded that the prevalence
of squares and the absence of triangles tell us some-
thing fundamental about the architecture of a square
lattice. In a complex network with an apparently
random wiring diagram it is difficult to find such
obvious signatures of order: all subgraphs, from trian-
gles to squares or pentagons, are probably present.
However, some subgraphs, which are known as
motifs, are overrepresented when compared to a
randomized version of the same network®***. For
example, triangle motifs, which are referred to as feed-
forward loops (BOX 3) in directed networks, emerge in
both transcription-regulatory and neural networks,
whereas four-node feedback loops represent charac-
teristic motifs in electric circuits but not in biological
systems®’. Each real network is characterized by its
own set of distinct motifs, the identification of which
provides information about the typical local intercon-
nection patterns in the network®. The high degree of
evolutionary conservation of motif constituents
within the yeast protein interaction network® and the
convergent evolution that is seen in the transcription-
regulatory network of diverse species towards the
same motif types®®’ further indicate that motifs are
indeed of direct biological relevance.

As the molecular components of a specific motif
often interact with nodes that are outside the motif, how
the different motifs interact with each other needs to
be addressed. Empirical observations indicate that
specific motif types aggregate to form large motif
clusters. For example, in the E. coli transcription-
regulatory network, most motifs overlap, generating
distinct homologous motif clusters (BOX 3), in which
the specific motifs are no longer clearly separable. As
motifs are present in all of the real networks that have
been examined so far®, it is likely that the aggregation
of motifs into motif clusters is a general property of
most real networks.

Hierarchy organization of topological modules. As the
number of distinct subgraphs grows exponentially with
the number of nodes that are in the subgraph, the study
of larger motifs is combinatorially unfeasible. An alter-
native approach involves identifying groups of highly
interconnected nodes, or modules, directly from the
graph’s topology and correlating these topological enti-
ties with their potential functional role. Module identifi-
cation is complicated by the fact that at face value the
scale-free property and modularity seem to be contra-
dictory. Modules by definition imply that there are
groups of nodes that are relatively isolated from the rest
of the system. However, in a scale-free network hubs are
in contact with a high fraction of nodes, which makes
the existence of relatively isolated modules unlikely.
Clustering and hubs naturally coexist, however, which
indicates that topological modules are not independent,
but combine to form a hierarchical network*”>.

An example of such a hierarchical network is shown
in BOX 2; this network is simultaneously scale-free and
has a high clustering coefficient that is independent of
system size. The network is made of many small, highly
integrated 4-node modules that are assembled into
larger 16-node modules, each of which combines in a
hierarchical fashion into even larger 64-node modules.
The quantifiable signature of hierarchical modularity is
the dependence of the clustering coefficient on the
degree of a node, which follows C(k) ~ k" (REE 58). This
indicates that nodes with only a few links have a high C
and belong to highly interconnected small modules. By
contrast, the highly connected hubs have a low C, with
their role being to link different, and otherwise not
communicating, modules. It should be noted that the
random and scale-free models that are shown in BOX 2
do not have a hierarchical topology, because C(k) is
independent of kin their case. This is not surprising, as
their construction does not contain elements that would
favour the emergence of modules.

Identifying topological and functional modules.
Signatures of hierarchical modularity are present in all
cellular networks that have been investigated so far, rang-
ing from metabolic™ to protein—protein interaction**
and regulatory networks. But can the modules that are
present in a cellular network be determined in an auto-
mated and objective fashion? This would require a
unique breakdown of the cellular network into a set of
biologically relevant functional modules. The good news
is that if there are clearly separated modules in the sys-
tem, most clustering methods can identify them. Indeed,
several methods have recently been introduced to iden-
tify modules in various networks, using either the net-
work’s topological description®**=** or combining the
topology with integrated functional genomics data®-". It
must be kept in mind, however, that different methods
predict different boundaries between modules that are
not sharply separated. This ambiguity is not only a lim-
itation of the present clustering methods, butitisa
consequence of the network’s hierarchical modularity.
The hierarchical modularity indicates that modules
do not have a characteristic size: the network is as likely
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to be partitioned into a set of clusters of 10-20 compo-
nents (metabolites, genes) as into fewer, but larger
modules. At present there are no objective mathemati-
cal criteria for deciding that one partition is better than
another. Indeed, in most of the present clustering algo-
rithms some internal parameter controls the typical
size of the uncovered modules, and changing the
parameter results in a different set of larger or smaller

modules. Does this mean that it is inherently impossible
to identify the modules in a biological network? From a
mathematical perspective it does indeed indicate that
looking for a set of unique modules is an ill-defined
problem. An easy solution, however, is to avoid seeking a
breakdown into an absolute set of modules, but rather to
visualize the hierarchical relationship between modules
of different sizes®>*"“?, The identification of the groups of

Box 3 | Subgraphs, motifs and motif clusters

Whereas the scale-free and hierarchical features of complex
networks emphasize the organizing principles that determine
the network’s large-scale structure, an alternative approach
starts from the bottom and looks for highly representative
patterns of interactions that characterize specific networks.

Subgraphs

A connected subgraph represents a subset of nodes that are
connected to each other in a specific wiring diagram. For
example, in part a of the figure four nodes that form a little
square (yellow) represent a subgraph of a square lattice.
Networks with a more intricate wiring diagram can have
various different subgraphs. For example, in part A of the
figure in BOX 1, nodes A, B and C form a triangle subgraph,
whereas A, B, F and G form a square subgraph. Examples of
different potential subgraphs that are present in undirected
networks are shown in part b of the figure (a directed network
is shown in part c). It should be noted that the number of
distinct subgraphs grows exponentially with an increasing
number of nodes.

Motifs

Not all subgraphs occur with equal frequency. Indeed, the
square lattice (see figure, part a) contains many squares, but
no triangles. In a complex network with an apparently
random wiring diagram all subgraphs — from triangles to
squares and pentagons and so on — are present. However,
some subgraphs, which are known as motifs, are over
represented as compared to a randomized version of the same
network®**", For example, the directed triangle motif that is
known as the feed-forward loop (see figure, top of part c)
emerges in both transcription-regulatory and neural
networks, whereas four-node feedback loops (see figure,
middle of part c) represent characteristic motifs in electric
circuits but not in biological systems*. To identify the motifs
that characterize a given network, all subgraphs of 7 nodes in
the network are determined. Next, the network is randomized
while keeping the number of nodes, links and the degree
distribution unchanged. Subgraphs that occur significantly
more frequently in the real network, as compared to
randomized one, are designated to be the motifs.

Motif clusters

The motifs and subgraphs that occur in a given network are
not independent of each other. In part d of the figure, all of
the 209 bi-fan motifs (a motif with 4 nodes) that are found in
the Escherichia colitranscription-regulatory network” are
shown simultaneously. As the figure shows, 208 of the 209
bi-fan motifs form two extended motif clusters (R. Dobrin
et al., manuscript in preparation) and only one motif remains
isolated (bottom left corner). Such clustering of motifs into
motif clusters seems to be a general property of all real
networks. In part d of the figure the motifs that share links
with other motifs are shown in blue; otherwise they are red.
The different colours and shapes of the nodes illustrate their
functional classification.
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molecules of various sizes that together carry out a spe-
cific cellular function is a key issue in network biology,
and one that is likely to witness much progress in the
near future.

Network robustness

A key feature of many complex systems is their robust-
ness, which refers to the system’s ability to respond to
changes in the external conditions or internal organiza-
tion while maintaining relatively normal behaviour. To
understand the cell’s functional organization, insights
into the interplay between the network structure and
robustness, as well as their joint evolutionary origins, are
needed.

Topological robustness. Intuition tells us that disabling a
substantial number of nodes will result in an inevitable
functional disintegration of a network. This is certainly
true for a random network: if a critical fraction of nodes
is removed, a phase transition is observed, breaking the
network into tiny, non-communicating islands of
nodes. Complex systems, from the cell to the Internet,
can be amazingly resilient against component failure,
withstanding even the incapacitation of many of their
individual components and many changes in external
conditions. We have recently learnt that topology has an
important role in generating this topological robust-
ness’. Scale-free networks do not have a critical thresh-
old for disintegration — they are amazingly robust
against accidental failures: even if 80% of randomly
selected nodes fail, the remaining 20% still form a com-
pact cluster with a path connecting any two nodes. This
is because random failure affects mainly the numerous
small degree nodes, the absence of which doesn’t dis-
rupt the network’s integrity”’. This reliance on hubs, on
the other hand, induces a so-called attack vulnerability
— the removal of a few key hubs splinters the system
into small isolated node clusters™.

This double-edged feature of scale-free networks
indicates that there is a strong relationship between the
hub status of a molecule (for example, its number of
links) and its role in maintaining the viability and/or
growth of a cell. Deletion analyses indicate that in
S. cerevisiae only ~10% of the proteins with less than
5 links are essential, but this fraction increases to over
60% for proteins with more than 15 interactions,
which indicates that the protein’s degree of connected-
ness has an important role in determining its deletion
phenotype'®. Furthermore, only ~ 18.7% of S. cere-
visiae genes (~14.4% in E. coli) are lethal when deleted
individually’®7%, and the simultaneous deletion of
many E. coli genes is without substantial phenotypic
effect’>7°. These results are in line with the expectation
that many lightly connected nodes in a scale-free net-
work do not have a major effect on the network’s
integrity. The importance of hubs is further corrobo-
rated by their evolutionary conservation: highly inter-
acting S. cerevisiae proteins have a smaller evolutionary
distance to their orthologues in Caenorhabditis
elegans’” and are more likely to have orthologues in
higher organisms®.

Functional and dynamical robustness. A complete
understanding of network robustness requires that the
functional and dynamic changes that are caused by per-
turbations are explored. In a cellular network, each node
has a slightly different biological function and therefore
the effect of a perturbation cannot depend on the node’s
degree only. This is well illustrated by the finding that
experimentally identified protein complexes tend to be
composed of uniformly essential or non-essential mole-
cules”. This indicates that the functional role (dispens-
ability) of the whole complex determines the deletion
phenotype of the individual proteins.

The functional and dynamical robustness of cellular
networks is supported by recent results that indicate
that several relatively well-delineated extended modules
are robust to many varied perturbations. For example,
the chemotaxis receptor module of E. coli maintains its
normal function despite significant changes in a speci-
fied set of internal or external parameters, which leaves
its tumbling frequency relatively unchanged even under
orders-of-magnitude deviations in the rate constants or
ligand concentrations***!. The development of the cor-
rect segment polarity pattern in Drosophila melanogaster
embryos is also robust to marked changes in the initial
conditions, reaction parameters, or to the absence of
certain gene products®®. However, similar to topologi-
cal robustness, dynamical and functional robustness are
also selective: whereas some important parameters
remain unchanged under perturbations, others vary
widely. For example, the adaptation time or steady-state
behaviour in chemotaxis show strong variations in
response to changes in protein concentrations®.

Although our understanding of network robustness
is far from complete, a few important themes have
emerged. First, it is increasingly accepted that adapta-
tion and robustness are inherent network properties,
and not a result of the fine-tuning of a component’s
characteristics®®®!. Second, robustness is inevitably
accompanied by vulnerabilities: although many cellular
networks are well adapted to compensate for the most
common perturbations, they collapse when well-
selected network components are disrupted. Third, the
ability of a module to evolve also has a key role in devel-
oping or limiting robustness*. Indeed, evolutionarily
‘frozen’ modules that are responsible for key cellular
functions, such as nucleic-acid synthesis, might be less
able to withstand uncommon errors, such as the inacti-
vation of two molecules within the same functional
module. For example, orotate phosphoribosyltrans-
ferase (pyrE)-challenged E. coli cells cannot tolerate fur-
ther gene inactivation in the evolutionarily highly
conserved pyrimidine metabolic module, even in rich
cultural media™. Finally, modularity and robustness are
presumably considerably quite intertwined, with the
weak communication between modules probably limit-
ing the effects of local perturbations in cellular networks.

Beyond topology: characterizing the links

Despite their successes, purely topology-based approaches
have important intrinsic limitations. For example, the
activity of the various metabolic reactions or regulatory
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microRNA

A class of small, non-coding
RNASs that are important for
development and cell
homeostasis, with possible roles
in several human disease
pathologies.

interactions differs widely: some are highly active
under most growth conditions, others switch on only
under rare environmental circumstances. Therefore, an
ultimate description of cellular networks requires that
both the intensity (that is, strength) and the temporal
aspects of the interactions are considered®>*. Although,
so far, we know little about the temporal aspects of the
various cellular interactions, recent results have shed
light on how the strength of the interactions is orga-
nized in metabolic and genetic-regulatory networks.

In metabolic networks, the flux of a given meta-
bolic reaction, which represents the amount of sub-
strate that is being converted to a product within a unit
of time, offers the best measure of interaction strength.
Metabolic flux—balance approaches (FBA)**, which
allow the flux for each reaction to be calculated, have
recently significantly improved our ability to make
quantifiable predictions on the relative importance of
various reactions, giving rise to experimentally testable
hypotheses®*. A striking feature of the flux distribu-
tion of E. coliis its overall heterogeneity: reactions with
flux that spans several orders of magnitude coexist
under the same conditions. This is captured by the flux
distribution for E. coli, which follows a power law. This
indicates that most reactions have quite small fluxes,
coexisting with a few reactions with extremely high
flux values®".

A similar pattern is observed when the strength of
the various genetic regulatory interactions that are
provided by microarray datasets are investigated®>.
Capturing the degree to which each pair of genes is
coexpressed (that is, assigning each pair a correlation
coefficient) or examining the local similarities in per-
turbed transcriptome profiles of S. cerevisiae indicates
that the functional organization of genetic regulatory
networks might also be highly uneven®*. That is,
although most of them only have weak correlations, a
few pairs show quite a significant correlation coefficient.
These highly correlated pairs probably correspond to
direct regulatory and protein interactions. This hypoth-
esis is supported by the finding that the correlations are
higher along the links of the protein interaction net-
work or between proteins that occur in the same com-
plex as compared to pairs of proteins that are not
known to interact directly’**>".

Taken together, these results indicate that the bio-
chemical activity in both the metabolic and genetic
networks is dominated by several ‘hot links’ that repre-
sent high activity interactions that are embedded into
aweb of less active interactions. This attribute does
not seem to be a unique feature of biological systems:
there are hot links in many non-biological networks,
their activity following a wide distribution®%. The
origin of this seemingly universal property of the links
is probably rooted again in the network topology.
Indeed, it seems that the metabolic fluxes and the
weights of links in some non-biological systems are
uniquely determined by the scale-free nature of the
network topology®". At present, a more general prin-
ciple that could explain the coexpression distribution
data equally well is lacking.

Future directions

Despite the significant advances in the past few years,
(molecular) network biology is only in its infancy.
Future progress is expected in many directions, ranging
from the development of new theoretical methods to
characterize the network topology to insights into the
dynamics of motif clusters and biological function.
Most importantly, to move significantly beyond our
present level of knowledge, we need to enhance our data
collection abilities. This will require the development of
highly sensitive tools for identifying and quantifying the
concentrations, fluxes and interactions of various types
of molecules at high resolution both in space and
time'"". In the absence of such comprehensive data sets,
whole arrays of functionally important cellular net-
works remain completely unexplored, ranging from sig-
nalling networks to the role of micrornas in network
topology and dynamics.

Similarly, most work at present focuses on the totality
of interactions or snapshots of activity in a few selected
environments and in an abstract space. However, a cell’s
internal state or position in the cell cycle, for example, is
a key determinant of actual interactions'® that requires
data collection in distinct functional and temporal
states. Equally importantly, all these interactions take
place in the context of the cell’s physical existence. So, its
unique intracellular milieu, three-dimensional shape,
anatomical architecture, compartmentalization and
the state of its cytoskeleton are likely to further restrict
the potential interactions in cellular networks. Finally,
most studies have so far focused on different subsets of
the complex cellular networks. Integrated studies that
allow us to look at all (metabolic, regulatory, spatial and
so on) interactions could offer further insights into how
the network of networks contributes to the cell’s observ-
able behaviour, as shown for the S. cerevisiae galactose
utilization pathway'®. Extending them to the whole cel-
lular network of an organism is the ultimate aim of net-
work and systems biology.

Conclusions

It is impossible to ignore the apparent universality we
have witnessed by delving into the totality of pairwise
interactions among the various molecules of a cell.
Instead of chance and randomness, we have found a
high degree of internal order that governs the cell’s mol-
ecular organization. Along the way, a new language has
been created, which allows the cell’s molecular makeup
to be discussed as a network of interacting constituents,
and to spot and quantify the interplay between behav-
iour, structure and function. The cell can be approached
from the bottom up, moving from molecules to motifs
and modules, or from the top to the bottom, starting
from the network’s scale-free and hierarchical nature
and moving to the organism-specific modules and mol-
ecules’. In either case, it must be acknowledged that
structure, topology, network usage, robustness and
function are deeply interlinked, forcing us to comple-
ment the Jlocal’ molecule-based research with integrated
approaches that address the properties of the cell as a
whole.
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It is now clearly understood that most cellular func-
tions are carried out by groups of molecules within
functional modules'. These modules are not isolated
from each other; they interact and frequently overlap (for
example, see REE. 104), within a network with an inherent
scale-free hierarchy, in which the achievable dynamical
range is constrained by the underlying topology***'. This
organizational framework is shaped during evolution at
many levels. The accumulation of local changes that affect
the small, highly integrated modules slowly impacts
the larger, less integrated modules, which indicates that
evolution and natural selection reuse existing modules to
further increase the organism’s survival probability and
its complexity.

This developing framework will significantly alter
our understanding of biology and, eventually, will

have important implications for the practice of medi-
cine. The breathtaking advances of modern molecu-
lar reductionist biology are starting to pay clinical
dividends, from the diagnosis of selected leukaemias,
on a molecular level, to their molecularly targeted
treatment with, for example, receptor tyrosine kinase
inhibitors. Network biology offers the possibility of
simultaneous advances in the coming decades. The
widespread use of microarrays to refine pathology
diagnosis is already evident (for example, see REE 105).
What is lacking is a well-developed framework in
which such clinical data can be used to identify mod-
ules that are pathologically altered in a given disease
state®’. Once such a framework is developed, the tar-
geted pharmaceutical modification (such as rewiring)
of diseased modules will surely follow.
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