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Abstract

Social groups are fundamental building blocks of human societies. While our social interactions have always been
constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on
social group structure. We construct a social network of individuals whose most frequent geographical locations are also
known. We also classify the individuals into groups according to a community detection algorithm. We study the variation
of geographical span for social groups of varying sizes, and explore the relationship between topological positions and
geographic positions of their members. We find that small social groups are geographically very tight, but become much
more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological
positions and geographic positions of individuals within network communities. These results suggest that spreading
processes face distinct structural and spatial constraints.
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Introduction

Social groups are common among animals and humans [1–5].

In humans, they reflect friendship, kinship, and work relationships,

and can also be seen as social networks. From an evolutionary and

historical perspective, the formation of such network groups –

consisting of agglomerations of dyadic interactions – has been

constrained by geography. In contrast, larger social units, enabled

by modern technology and political organization, offer drastically

different opportunities for social interactions and for group

assembly over larger geographic ranges. This raises two sorts of

questions. First, is the structure of ‘‘old-fashioned’’ groups similar

to the large-scale groups possible in modern society? And second,

what role does geography play in group formation?

If we represent the social relationships among a population of

people as a network, then groups can be seen as ‘‘communities’’

within the population that consist of sets of nodes that are relatively

densely connected to each other but sparsely connected to other

nodes in the network [6,7]. While social communities have been

studied for a long time [8], it has recently become feasible, with

mobile phone data, to monitor the social interactions and geographic

positions of millions of individuals [9,10], and to apply algorithmic

detection of communities on a large scale [6,7]. The structure of

dyadic social interactions is known to depend on geography, for

example, as shown by the decay of friendship probability with

distance, based on voluntary self-reports of hometown and US state,

in a blog community [11], and the decrease in communication

probability with distance based on the zip codes of cell phone billing

addresses [12]. In addition, a previous study has shown that smaller

communities are more homogeneous with respect to the billing postal

codes of their members [13], while another presented evidence that

this persists across a hierarchy of communities [14]. However, there

are no prior large-scale studies of the way in which community

structure depends on geography, where the actual communication

locations are used and where geographical properties of communities

themselves are examined (see Fig. 1).

With respect to group formation, geography can be seen as a

kind of constraint. That is, social connections not only face

network constraints and opportunities (we tend to form ties with

others who are the friends of our friends), but also, quite obviously,

geographic constraints and opportunities. What is unclear,

however, is the way in which such geographic constraints and

opportunities affect and shape network communities above and

beyond their effect on dyadic interactions.

Results

Dyadic Interactions and Geography
We create a network of social interactions by measuring ties

between individuals based on mobile phone call and text
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messaging data from an unnamed European country. Based on

the records of 72.4 millions calls and 17.1 million text messages

accumulated over a one-month period, the resulting network has

3.4 million nodes connected by 5.2 million weighted (non-binary)

ties, resulting in an average degree SkT&3:0. Each time a user

initiated or received a call or a text message, the location of the

tower routing the communication was recorded [10]. We

exploited these records to assign each individual to the location

where they conducted most of their cell phone communication,

which for most individuals is likely to correspond to the location of

their home or work. This resulted in one coordinate pair (xi,yi)
per user, which enabled us to define the geographic distance for

any user pair as dij~dji~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi{xj)

2z(yi{yj)
2

q
. We used this to

compute the probability of a call-tie and the probability of a text-

tie as a function of distance (Fig. 2).

Although from the point of view of technology there is very little

difference between placing a short-distance or long-distance

communication (for either voice or text), we find that the

probability of communication is strongly related to the distance

between the individuals, and it decreases by approximately five

orders of magnitude as distance increases from 1 km to 1,000 km.

The behavior of voice-ties and text-ties is essentially identical. The

average distance between two connected nodes is 42 km for voice

ties and 51 km for text ties. The decay of the tie probability

approximately follows a power-law of the form P(d)*d{a, before

it falls due to reaching the physical boundaries of the system. We

used the maximum-likelihood method [15] to estimate both the

exponent a and the lower bound dmin from which the power-law

holds, and obtained a&1:58 for voice ties and a&1:49 for text

ties, with the lower bounds estimated at 7.1 km and 4.1 km,

respectively. In estimating these parameters, we constrained our

search to ties whose distance was less than 800 km to avoid

boundary effects, still leaving us over 99% of the ties.

We define tie strength wij~wji as the number of interactions

between nodes i and j, and it can quantified either as the number

of calls between the two nodes or, alternatively, as the number of

text messages between them. Interestingly, while geography is so

strongly associated with the existence of a tie, tie strength varies

only weakly with distance and is similar for both text and voice

(Fig. 2 inset).

Community Interaction Structure and Geography
It is clear that ties or dyads should be the building blocks of

social groups or communities, but what constitutes a community

and how it should be identified needs to be specified. We detect

topological communities using the method of modularity maxi-

mization, which measures how well a given partition of a network

compartmentalizes its communities [6,7,16,17] (see Methods for

details). For this purpose, we combine voice-ties and text-ties into

one network.

Next, we examined how the topological centrality of nodes

within communities is associated with their physical centrality.

Given the community membership of each individual, we

computed the geographical center (Xs,Ys) of community s using

Xs~(1=ns)
P

i[Cs
xi and Ys~(1=ns)

P
i[Cs

yi, where ns is the

number of members (nodes) in the community. We measured

topological centrality using betweenness centrality, whereas

physical centrality was measured as the distance from a node to

the geographic center of its corresponding community. Given that

both betweenness centrality and the physical span of communities

increase as a function of community size, we normalized these

quantities by considering their percentile values, instead of dealing

with their absolute values. (Note that while betweenness centrality

can be normalized to be independent of network size, there is no

similar normalization available for the physical distances.) We

included communities whose size varied between 10 and 1,000

nodes. While the community detection algorithm found commu-

nities that were significantly larger than this upper bound, we

deemed them to be too large to be taken as social communities.

Including communities smaller than 10 led to discretization effects

when computing percentiles.

In historically relevant social arrangements, one might expect

the two measures of betweenness centrality and geographic

distance from the community center to be strongly correlated,

but here we found essentially no correlation between them (Fig. 3).

Pearson’s linear correlation coefficient between these two

measures, both taken as percentiles, was 20.07 (we obtained

0.05 if communities smaller than 10 were also included).

Therefore, there seems to be no relationship between topological

centrality and physical centrality of nodes within communities in

this network.

Figure 1. Visualization of a community in the mobile phone network. This juxtaposition of (A) the topological structure and (B) the
geographical structure demonstrates the interplay of these two dimensions. The purple and orange nodes are geographically close, but topologically
they lie at five degrees of separation. In contrast, the red and green nodes are connected to each other, and also share several neighbors, yet they are
geographically separated by a large distance. Overlapping nodes in (B) have been moved slightly for visual clarity.
doi:10.1371/journal.pone.0016939.g001
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Next, we characterized the overall geographical shape of the

communities by defining the geographical span for a given

community s as

D(s)~(1=ns)
X
i[Cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xs{xi)

2z(Ys{yi)
2

q
, ð1Þ

where D is measured in units of distance, and large values of D
indicate that the members of the community are geographically

spread out. We found an upward trend that persisted with a

leveling off until, surprisingly, a large bump occurred for

communities in excess of 30 nodes (Fig. 4).

To put this result in a context, we introduced two null models.

In the community null model, instead of using the true geographical

coordinates (xi,yi) of community members, we draw the (xi,yi)

coordinate pairs uniformly at random from the underlying

distribution of all coordinate pairs, keeping a given x-coordinate

coupled with the associated y-coordinate, resulting in the quantity

Dc. If Dc(s)~D(s), this would suggest that the members of the

community are randomly scattered in the country, i.e., regardless

of being members of the same community, they are not

geographically proximate. As shown in (Fig. 4), the real

community span is much smaller than the span of the null

community. What is especially notable is the constraining role of

geography for small communities. As community sizes increase,

say, from five to ten individuals, the value of the null span

increases dramatically from about 70 km to about 300 km,

quantifying the expected growth in geographical span if the

impact of geography could, somehow, be turned off. Instead, we

observe relatively modest growth for the empirical span D, which

for communities of size ten reaches a value of just 50 km, and stays

relatively unchanged until communities exceed 30 in size.

The community null model does not incorporate our earlier

finding that the connection probability decays with distance as

Figure 2. The probability of having a tie decreases as a function of distance. Two limiting cases, corresponding to exponents one and two,
are shown as dashed lines. Note that if geography played no role, we would expect P(d) to be independent of distance d , resulting in a horizontal
line in this plot. Inset: Tie strength, in contrast to the communication probability, is nearly flat with distance, although there is a minor decreasing
trend for voice-ties.
doi:10.1371/journal.pone.0016939.g002
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P(d)*d{1:5. We next asked whether this decay, coupled with the

concentration of populations in cities, might explain the observed

bump. To account for this possibility, we introduce the dyadic null

model. The algorithm starts by picking one location, uniformly at

random, as the geographical center of the community. It then

samples other locations, again uniformly at random, and computes

the probability for there to be a tie between the center of the

community and the current location, where the probability

distribution is assumed to follow a power-law with exponent

a~1:5. To determine whether the current location is included in

the community, the algorithm performs a Bernoulli trial with the

given probability, and this continues until we have 50 members in

the community. We compared the result of the dyadic null model

without decay, achieved by accepting each trial location for

inclusion, to the community null span. Apart from a slight

horizontal shift, the two null models produce very similar

outcomes. We then consider the dyadic null model with decay,

varying the value of the scale parameter dmin, running each

simulation 1,000 times. Although the numerical values are not

comparable between the dyadic null model and the community

null model, the former demonstrates that inclusion of the decay of

the connection probability with distance yields a smooth curve for

the span. In particular, decay with distance cannot explain the

observed bump.

We also explored the spatial distribution of the nodes within a

community. In general, the nodes of a given community need not

be distributed spatially uniformly. To quantify this ‘‘clumpiness’’ of

a community, we wanted to determine the number of spatial

clusters making up the community. We used k-means clustering

[18] which aims to partition the set of data points into k clusters

such that each point belongs to the cluster with the nearest mean.

Since the number of clusters k is given as input to the method, it

can be seen as a model parameter, and it needs to be determined

separately. At the extreme ends, one could assign every point to a

single cluster, an approach likely to result in a large error measure,

or one could assign every point to its own cluster, leading to zero

error. We used the Akaike Information Criterion to determine the

optimal value for k [19].

We found that the number of spatial clusters increases linearly

with community size, until communities of about size 20, when the

behavior appears to change (Fig. 5). The increase in community

span for communities larger than 20, without a comparable

increase in the number of spatial clusters, suggests a threshold in

structure and behavior based on community size. Based on linear

fits to data, the addition of an extra community member causes, on

average, a marginal increase of 0.67 spatial clusters in small (few

members) communities, whereas in large (many members)

communities, the addition of an extra community member causes,

on average, a marginal increase of 0.29 spatial clusters. For

example, an increase from 5 to 15 members increases the number

of spatial clusters by 6.1, whereas an increase from 25 to 35

members results in an increase of 2.7 clusters. Communities

therefore seem to grow initially by recruiting spatially more distant

clusters, but less and less so as the communities get bigger.

Figure 3. Relationship between topological centrality and geographic centrality. 42,123 nodes in communities varying in size from 10 to
1,000 are examined, and both quantities are measured in terms of percentiles. The number of observations (nodes) that lie within each bin is
indicated by its color.
doi:10.1371/journal.pone.0016939.g003
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Discussion

Our findings on the geographic decay of ties differ from those

obtained for a network constructed from the customers of a Belgian

mobile operator. Using zip codes provided for billing purposes to

compute distances between individuals, Lambiotte et al. showed that

the probability for two individuals to be connected decays as

P(d)*d{2, which led them to suggest that the decay follows a so-

called gravity model [12]. Our result, essentially showing that

P(d)*d{1:5, differs for various possible reasons: we used the

maximum-likelihood technique to estimate the value of the

exponent [15]; our range of distances is larger (800 km vs. 100
km), allowing for more statistical power; we used the location of

maximal phone use as opposed to the location of the billing address

(which is often not reliable); and the population density in our target

country is significantly lower than that of Belgium. Our result that

tie strength does not vary with distance is complementary to the

finding of Lambiotte et al., who report that the average duration of

phone calls increases with distance, reaching a plateau around

40 km. Therefore, while the number of calls made to long-distance

individuals friends is slightly smaller than those made to short

distance friends, the average duration may be twice as long [12].

Communities appear to have particular properties in relation-

ship to geography, properties that are distinct from the underlying

interactions between pairs of individuals. Geography constrains

group formation in important ways that nevertheless differ from

the way it constrains dyadic interactions. On the one hand,

comparison of topological and geographical centrality of nodes

within communities demonstrated that the two are essentially

uncorrelated. On the other hand, we find that the geographic

shapes of social groups, measured in terms of geographic span and

spatial clustering, vary in regular ways with the size of the group.

For small communities, as their size increases, their expected

geographic span increases smoothly at first, but then experiences a

sudden bounce as the community size reaches about 30 members.

To exemplify this behavior, an increase in community size from 10

to 20 members is associated with an increase in span by about

40%, whereas, in contrast, an increase from 30 to 40 members

leads to an increase of about 100% in geographic span. This

suggests that the tendency of human groups to remain geograph-

ically cohesive gradually gives in as the group size exceeds 30.

Similarly, the number of clusters within a single topological group

also increases with community size. Intriguingly, the number 30 is

also close to the optimal group size for which cooperation in social

dilemma situations, modeled, for example, by the public goods

game, is maximized [20,21].

Just as the structures of observed social interactions may be

compared to randomized networks, the observed localities of

Figure 4. Average observed geographic community span D (red) and average geographic community null span Dc (blue). The dyadic
null span with decay, denoted by Dd , incorporates the decay of the connection probability as a function of distance for various values of the scale
parameter, shown as dashed lines. The solid black line is the dyadic null span without decay. Both are measured in kilometers. We observe large
deviations from both null models, which can be quantified as the areas between the empirical curve and any of the null curves.
doi:10.1371/journal.pone.0016939.g004
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individuals in communities may be compared to randomized

locations. Indeed, if social ties could be formed without

consideration for the underlying geography, we would expect

the tie probability to be independent of distance, and the

geographic span of groups to follow the proposed null models

closely. However, we observe neither of the two. This demon-

strates that network ties and network communities, in this context,

do not behave as if they were in well mixed populations, suggesting

that geography continues to maintain its power as a compart-

mentalizing factor. Thus, the assumption of perfect mixing of

individuals, sometimes made in the study of infectious disease or

technology diffusion in humans, does not then appear to hold

either at the topological or at the geographic level.

The extent to which a spreading process follows the assumptions

of well-mixed populations often depends on a number of

conditions, including the nature of the spreading process. For

example, network models can better account for the spread of

diseases that spread via the formation of a physical tie (such as

STD’s) than those that spread by simple proximity (like the

common cold). This is illustrated in a mobile phone context by

Wang et al. [22], who find that the nature of the spreading process,

and its dependence on proximity, clearly affect the dynamics of the

spreading. Similarly, localization of interacting proteins within the

geography of the cell can explain certain disease associations [23].

In addition, other work has suggested that the diffusion-like

movement of people alone can often explain how a pathogen

spreads, such as the plague in medieval Europe [24]. On the other

hand, with the onset of air travel, pathogens are not constrained in

the same way, as the epidemics of SARS and H1N1 documented

[25,26].

Ideally, models of the flow of pathogens or information through

human populations would account for the simultaneous roles of

geographic and network constraints, and our work helps shed light

on the intersecting relationship between the two. Future work will

explore the complex interrelationship between network topology

and geography and their joint importance in understanding how

phenomena spread through populations.

Methods

All networks were constructed from four weeks of anonymized

mobile phone call and text messaging data from an operator based

in an unnamed European country. Only interactions that took

place between customers of the operator were considered, and

only individuals who made at least two calls were included as

nodes. To filter out sporadic calls and texts that are unlikely to

Figure 5. The average number of spatial clusters for empirical data, versus topological (network) community size. Clusters are
detected using the k-means algorithm with the Akaike Information Criterion. We fit two models to data. First, a linear model y~a1za2x was fit in
two parts, shown in green, as well as a non-linear model y~b1zb2xb3 , shown in red. We obtained the values a2~0:67 for the first slope and a2~0:29
for the second slope of the linear fits, and b3~0:43 for the exponent of the non-linear model, implying approximately square-root behavior.
doi:10.1371/journal.pone.0016939.g005
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correspond to meaningful social interactions, we required there to

be a minimal level of reciprocation for a tie to be included in the

network; each person had to initiate at least one interaction, where

the initial transaction could be either a call or a text, and this could

be reciprocated by either a call or a text.

We detected topological communities using the popular method

of modularity maximization [6,7,16,17] in the following manner.

We first converted the original network consisting of directed voice

calls and text messages into a symmetric unweighted network,

effectively combining the two modes of interaction. We then

proceeded to maximize modularity defined as

Q~
1

2w

X
i,j

Aij{
kikj

2w

� �
d(ci,cj), ð2Þ

where the adjacency matrix element Aij denotes the presence

(Aij~1) or absence (Aij~0) of a connection between nodes i and j,
ki is the degree of node i, w the total weight of the edges in the

network, ci the community assignment of node i, and d(ci,cj) is the

Kronecker delta function, which is unity if and only if ci~cj ,

otherwise it is zero. Modularity measures the difference between

the total fraction of edges that fall within groups versus the fraction

one would expect by chance. A common null model, sometimes

called the Newman-Girvan null model, is codified by the

kikj=(2w) term, and it takes degree heterogeneity into account

by preserving the expected degree distribution. High values of Q

indicate network partitions in which more of the edges fall within

groups than expected by chance. While maximizing modularity is

known to be an NP-hard problem [27], there are numerous

computational heuristics available [6,7]. Since we are dealing with

networks consisting of millions of nodes, we chose the Louvain

method for its computational efficiency [28].
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