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Degree Centrality

Because there is no right answer, several centrality measures have been
developed and used. Google developed a good one, which is why google
searches usually find the best web sites on the first page.

How can the nodes of a network be ranked according to their importance?

The simplest centrality measure just ranks the nodes according to their degree
(or in-degree or out-degree for directed networks). This is degree centrality.

High degree, very central



Degree Centrality

Let "⃗ be the n-dimensional degree centrality vector for an undirected network. 
Then

"# = %
&'(

)
*#& or "# =

1
,%&'(

)
*#&

The actual values don’t matter, only the ranking matters.



Degree Centrality
!"

Color coded according to degree centrality



Eigenvector and Katz Centrality



It’s Not How Many You Know, But Who You 
Know 

In a social network, you may have more influence if you know a few 
influential people than if you know many not-so-influential people.

Idea: when computing centrality of a node, take into consideration the
centrality of the nodes it is connected to.

!" = $%
&'(

)
*"&!& Eigenvector centrality

where $ is a positive scaling factor.

In vector form:
1
$ !⃗ = *!⃗ so !⃗ is an eigenvector of A



Which Eigenvector? 

There are n eigenvectors. Which is the right one? 

Pick one with all non-negative elements, since this is a ranking.

Perron-Frobenius Theorem: If a square matrix has non-negative
elements, then only the leading eigenvector has elements with
all elements of the same sign.

Pick this eigenvector, and multiply by -1 if necessary to make all
elements positive. 

Then !" = "
$ and &⃗ is the corresponding leading eigenvector of A.

This is the eigenvector centrality.



Degree vs. Eigenvector Centrality 

Some nodes ranked similarly (red is highest, purple lowest), but many
differences. With eigenvector centrality, more of a distinction between
nodes with high centrality and nodes with low centrality.



Degree vs. Eigenvector Centrality 

Some nodes ranked similarly (red is highest, dark purple lowest), but 
many differences. With eigenvector centrality, more of a distinction 
between nodes with high centrality and nodes with low centrality.

Eigenvector centrality Degree centrality



Potential Problem with Directed Graphs 

A

BC

D

E

What is the eigenvector centrality for A? !" = 0

What about B? !% = 0

What about C, D, E? !&,(,) = 0

Calculate centrality here in terms of incoming edges



Katz Centrality 

where ! > 0 is weight put on neighbors and $ > 0 is the free centrality.
Notice that the sum is down a column of A since it is using information
about incoming edges. For convenience, define the matrix % ≡ '(.

*+ = !-
./0

1
'.+*. + $ = !-

./0

1
'+.( *. + $

Can just set the free centrality to 1, then

*+ = !-
./0

1
%+.*. + 1

In vector form, *⃗ = !%*⃗ + 1

5 − !% *⃗ = 1

*⃗ = 5 − !% 701
Katz Centrality

Workaround: give every node some centrality



Katz Centrality: Choosing !
How do we choose !?

Make it large to emphasize input from neighbors, but can’t make it too 
large.

As ! → 0, the centrality becomes dominated by the free centrality
term $, so all centrality terms tend to equal values. As ! is increased,
the centrality of some nodes grow much larger than others, and will
eventually diverge to ∞ as ! → ∞. So there must be some upper bound
on !. What is it?



Katz Centrality Convergence Condition 

We must make sure the matrix is invertible. The matrix becomes singular when

det $ − &' = 0

det ' − 1
& $ = 0

This is just the characteristic equation for the eigenvalues of ' = +,. That is, 
eigenvalues satisfy

det ' − -$ = 0

So - = 1
& & = 1

-

To keep the matrix non-singular requires & < 1
- Which eigenvalue?

All of them! So pick the one that is most restrictive & < 1
-/

If & does not satisfy this condition the centrality will be meaningless  



Iterative Calculation of Katz Centrality 
Problem: Katz centrality requires inversion of an !×! matrix. This requires 
n3 algebraic operations. For a 1000-node network, this is 1 billion operations.

Good news: There is a much better way, using an iterative algorithm. Recall
that the Katz centrality vector satisfies

$⃗ = &'$⃗ + 1

As long as & satisfies the convergence condition, the iterates will converge to 
the solution to the equation at the top. That is, iterates will converge to the 
Katz centrality.

Convert this to the following recursion relation:

$⃗*+, = &'$⃗* + 1

Iterate for k=1, 2, 3, … until a stopping criterian is met, like

$⃗*+, − $⃗* < / for some small / > 0.

Each iteration requires matrix-vector multiplication, cheaper than matrix inversion.
Can often stop after just a few iterations.



Degree, Eigenvector, and Katz Centrality 
Eigenvector centrality Degree centrality

Katz centrality



Closeness, Harmonic, and 
Betweenness Centrality



Closeness Centrality
Basic idea: Nodes closest to all other nodes in the network (in terms of 
path length) are the most central.

Let pij be the length of a shortest (geodesic) path between nodes i
and j. To compute the closeness centrality for node i, compute the mean
geodesic distance between i and all other nodes in the network.

!" =
1

% − 1'()*

+
,"( mean geodesic path length

Now invert this, so that nodes with large !" have small centrality.

-" =
1
!"

Closeness centrality



Harmonic Centrality
In closeness centrality there is summation of geodesic path lengths,
followed by inversion. In harmonic centrality these two operations are
reversed. 

Let pij be the length of a shortest (geodesic) path between nodes i
and j. Then 

!" =
1

% − 1'()*

+ 1
,"(

In the summation, if ,"( = 0 this means that nodes i and j are not connected.
Replace *./0 with 0.

Harmonic centrality

It gets its name from the harmonic sum, ∑+)*2 *
+ .



Problems with Closeness and 
Harmonic Centrality

They are hard to compute: Finding geodesic paths is not easy in a large 
network. It is very computationally expensive to apply the breadth first 
algorithm n times when n is large. 

They do not effectively separate nodes: The span of centrality values over
the network is typically small, so not much difference in value between
hubs and non-hubs.



Betweenness Centrality
Basic idea: The most central nodes are those on geodesic paths of a lot of 
other nodes.

Let !"#$ = &10
If node i is on a geodesic path between nodes s and t
Otherwise

Then
)" = *

#,$,-

.
!"#$

But what if there are two geodesic paths between nodes s and t and node 
i is only on one them? Then it should get half credit. More generally, let
gst be the number of geodesic paths between nodes s and t. Then

)" =
1
!/ *#,$,-

. !"#$
0#$)" = *

#,$,-

. !"#$
0#$

Betweenness centrality

or normalized



Centrality Comparison 

Betweenness

Degree

Closeness

Eigenvector

Harmonic Katz



Hubs, Authorities, and PageRank



Being Google is Not Easy 

Three major problems in information retrieval:

Synonymy: multiple ways of saying the same thing

Ex: a search for recipes involving green onions could miss
recipes involving scallions 

Polysemy: multiple meanings for the same term

Ex: a search for jaguars, the animal, could turn up web
pages on cars or football teams

Abundance: there are a lot of web pages out there, most are
irrelevant to a user of the search engine. How does Google pick 
the ones the user might want?



Example: Searching for a Good Newspaper 

Consider the task of finding a good newspaper on the web. A search will

turn up local newspapers and prominent newspapers (which is what you want),

but also things links to things like Yahoo, Facebook, Amazon, etc. since these

sites have a lot of other sites relating to newspaper pointing to them. That is,

they have a high in-degree from relevant nodes. How does Google find the

most relevant sites to list on the first page of the search?



Iteration ½: Calculate “Votes” for Newspaper 
sites 

Web pages th
at lin

k to “n
ewspaper” s

ites



Iteration 1: Score the Sites That Casted Votes 
According to How Good Their Votes Were 



Repeat: Update the Newspaper Scores, Using 
the New Scores of the Voting Sites 



Normalize: So That Scores Don’t Grow Without 
Bound, Normalize Newspaper Scores By Their 

Sum



Keep Iterating Until Satisfied
Note that all scores have been normalized (hubs and authorities separately).

This shows the limiting ranking or scores. Hubs are web sites that have
high ranking for selecting good newspaper sites. Authorities are the
web sites that have high ranking as determined by good endorsements.

Hub ce
ntra

lity
 (ℎ
)

Authorit
y c

en
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 (%⃗
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Hubs and Authorities as Matrix Iteration

Authority update: "⃗# = %&ℎ#()

or

ℎ# = (%%&)ℎ#()

"⃗# = (%&%)"⃗#()

After k updates,

"⃗# = (%&%)#"⃗,

ℎ# = (%%&)#ℎ,

To update authority node j, sum all the hub nodes that project to j. This
is a weighted sum down column j of A, or row j of its transpose.

Hub update: ℎ# = %"⃗#

To update hub node j, sum all the authority nodes that node j projects
to. This is a weighted sum along row j of A.



Spectral Solution for Hub/Authority Centrality

"⃗# = %&'&#(⃗& + ⋯+ %+'+#(⃗+Spectral Solution:

Either solution can be written in terms of eigenvalues/eigenvectors. For
authorities, 

where ',, (⃗,are eigenvalues/eigenvectors of the matrix -.-.

Since this matrix has all non-negative elements, the Perron-Frobenius
Theorem tells us that there is exactly one eigenvector with all positive
elements, and this is the eigenvector associated with the leading
eigenvalue, '&. Since the limiting hub vector has all non-negative elements,

Equilibrium authority centrality: -.-"⃗ = '&"⃗



Spectral Solution for Hub/Authority Centrality

Similar arguments hold for the hub centrality. But what relationship
is there between the leading eigenvector of !!"and that of !"!?

Multiply the equilibrium authority centrality by A:

!!"(!%⃗) = ()(!%⃗)

So the leading eigenvalue (or any eigenvalue) of !!"is the same as
for !"!. Also, the associated eigenvectors are just A times those for 
!"!.

ℎ = !%⃗Equilibrium hub centrality:



PageRank is Based on This Concept of Quality 
Endorsement

Guiding principle: A page (web site) is important if it is cited by other important pages.

Intuitive idea: We can think of PageRank as a kind of fluid that passes from node 
to node through the edges. Pooling of fluid into some nodes indicates the most 
important nodes.



PageRank is Based on This Concept of Quality 
Endorsement

Algorithm: 

• Assign all nodes an initial PageRank, 1/n
• Choose a number of steps, K
• Perform K updates to the PageRank values using the following rule:

Basic PageRank update rule: Each page divides its current PageRank
equally across its outgoing edges and passes these to pages it points to.
(If there are no outgoing edges, it keeps the PageRank.) Each page
updates its new PageRank to be the sum of the shares it receives.

Note that PageRank is conserved over the network, with a total of 1.



PageRank Iteration

Iteration 0: All nodes start with PageRank of 1/8



PageRank Iteration

Iteration 0: All nodes start with PageRank of 1/8



Equilibrium PageRank
If the network is strongly connected, then the iteration converges to a 
unique set of equilibrium values. That is, it does not matter how PageRank 
is initially assigned, the values always converge to the same distribution 
among the pages.

Equilibrium PageRank
values



Problem: PageRank Drains Into Cycles

Eventually, as iteration proceeds, everything accumulates in F and G.
The problem is that they form a cycle or loop; PageRank can get in (from C),
but can’t get out. Any network with a cycle will have the same problem.



Solution: Let it Rain

Each iteration, take some PageRank and randomly distribute it among
the pages.

Scaled PageRank Update Rule: First apply the Basic Update Rule.
Then scale down all PageRank values by a factor s. This means that
the total PageRank is reduced from 1 to s. Now distribute the 
residual 1-s units of PageRank equally over all nodes, giving
(1-s)/n to each.  

This approach converges to a set of equilibrium values, as long as the
network is strongly connected. 

This is the version used in practice (by Google and probably others)
with an s value between 0.8 and 0.9.



PageRank and Random Walks
Consider someone randomly browsing web pages, starting from
a randomly-determined page. They follow links for a sequence of 
K steps: in each step, they pick a random outgoing link (without
bias)  and follow it. This is a random walk on the network.  

The probability of being at page X after K steps of this random walk 
is precisely the PageRank of X after K applications of the Basic
PageRank Update Rule!



PageRank as Matrix Iteration
The iterative process for calculating PageRank can be described with 
matrix-vector multiplication. This uses a matrix N that is like the 
adjacency matrix, but with non-zero entries equal to 1/(out-degree)
of each node.

N=

0 1/2 1/2 0

0 0 1 0

0 0 0 1

1/2 1/2 0 0

1

2 3

4

Note that each row sums to 1, but not for columns.

If a node has no outward edges, that row will be filled with 0s except
for a 1 on the main diagonal (there is a self-edge; the node gives its
PageRank back to itself).



Scaled PageRank Iteration
In terms of matrix-vector multiplication, the basic PageRank update 
rule is that the value at node j is the weighted sum of incoming edges, 
or the weighted sum down column j of matrix N:  "⃗# = %&"⃗#'(.

)% =
0.05 0.45 0.45 0.05
0.05 0.05 0.85 0.05
0.05 0.05 0.05 0.85
0.45 0.45 0.05 0.05

For the scaled PageRank update, calculate N and scale by a factor s,
then redistribute the remaining (1-s) to all nodes. This produces
the following matrix (for s=0.8):

The scaled PageRank update rule is then:   "⃗# = )%&"⃗#'(

At equilibrium (large number of iterations), "⃗ = )%&"⃗, so
the PageRank centrality is the eigenvector of )*+ with (leading)
eigenvalue of 1.

By the Perron-Frobenius Theorem, this eigenvector has non-negative elements.



The End


