
Network Partitioning and 
Community Detection



Network Partitioning



Goal of Partitioning: Optimally Separate Groups 
of Nodes 

The partitioning problem consists of finding a division of a network
into a given number of subnetworks, or clusters, of given sizes, such
that the total number of links connecting nodes in different clusters
is minimized.

The set of edges joining the clusters
is called a cut

Partitioning seeks to find the way to group nodes so that the
cut joining the groups is minimized. Often called the minimum cut problem.



Kernighan-Lin Algorithm for Graph Bisection 

The goal here is to divide the network into two pieces of equal size (plus 1 if 
node number is odd), called graph bisection. The algorithm easily generalizes to 
partitions with more than 2 clusters.

Begin with an arbitrary bisection ! of the graph into clusters A and B. At each 
iteration, do the following:

1. For each pair of nodes " ∈ $ and % ∈ &, compute the variation in cut
size between the current partition and the one obtained by swapping i and j. 

2. The pair of nodes "∗and %∗ yielding the largest decrease in the cut size
is selected and swapped. This pair of nodes is locked; they will not be 
touched again during this iteration.

3. Repeat steps 1 and 2 until no more swaps of unlocked nodes yields a
decrease in the cut size. This yields a new partition !( that is used as 
the starting configuration for the next iteration. 

Stop iterating when the new partition fails to improve on the previous one.



The Fiedler Method 
Uses the smallest non-zero eigenvalue of the graph Laplacian to partition a
graph. 

The Fiedler value or algebraic connectivity of G is the first non-zero eigenvalue, !".

Recall that if G is a simple undirected graph with n nodes, then the graph
Laplacian matrix is # = % − ' where % is the main diagonal matrix of '.
If G is connected then the eigenvalues of L satisfy:

0 = !) < !" ≤ !, … ≤ !.

The Fiedler vector is the eigenvector corresponding to the Fiedler value.

The idea is that nodes corresponding to positive elements of the Fiedler vector
form one community, while those corresponding to negative elements form
the other. If there is a 0 element, then put that node into either community.



The Fiedler Method 

The eigenvalues of L are 0, 0.36, 2, 2.28, 3, 3.59, 4.78

The Fiedler value is 0.36 and the Fiedler vector is

Nodes with positive entries: 1, 2,3
Nodes with negative entries: 4, 5, 6, 7

"⃗ = (0.48, 0.48, 0.31, −0.35, −0.42, −0.35, −0.15)

First community={1, 2, 3}   Second community={4,5,6,7}

This agrees with our expectation; we removed the minimum 
number of edges in the partition, while keeping similar number
of nodes in the subgraphs. This is called a minimum cut.



Graphs with More Modules 

In our last example, the eigenvalues of L were 0, 0.36, 2, 2.28, 3, 3.59, 4.78

The largest spectral gap is between !" = 0.36 and !( = 2, indicating two
modules.

In general, we can look for the biggest jump in the eigenvalues of L. If 
the biggest jump in value is between !* and !+, then the most 
reasonable description of the graph is that it has 4 modules. This jump 
between eigenvalues is called the spectral gap.



Graphs with More Modules 

Eigenvalues of L: 0, 0.2, 1, 1, 3, 3, 3, 3, 5, 6.8

Clear large spectral gap between !" and !#. Indicating 4 modules in the graph.

Information on how to form these modules is contained in the three
eigenvectors associated with the first 3 non-zero eigenvalues, 

%⃗&, %⃗(, %⃗"
Each of these has dimension equal to the number of nodes, which is 10.



Graphs with More Modules 
The first element of each vector corresponds to node 1. Collect them
Into a vector !". Do the same for the second element, forming !#.
Repeating, there will be % = 10 such vectors, each with 3 elements. 
Plot these in 3-D space with tails at the origin, and the vectors point 
to n points in ℝ*.

Those points that “cluster together” should correspond to nodes in the same
module. But how to do this clustering analysis? 

Sketch in 2-D



K-means Clustering 

Colors are different
initial centroids, 
chosen randomly

Here K is the number of clusters you want to put the “data” into.
In our example, we want to find 4 modules in the graph, so the “data”
should be put into 4 clusters.

Step 1: Initialize by picking 4 of the data points, and calling each
a centroid: !", !$, !%, !&.
Step 2: Assign each other data point to be in the cluster with the closest centroid.

Step 3: Recalculate the centroids for the 4 existing clusters and repeat steps 2 and 3.

Continue iterating until none of the data points change clusters.



Outcome with Our Example 

Choosing different initial means could have produced somewhat different
results. What would another possible result look like?

Different colors
indicate different
modules

This approach could be called Spectral Community Detection since it
uses eigenvalue and eigenvector information.



Clustering Data 

What if we don’t have a network, but just data points? 

There are clearly 2 clusters here, the inside points and those on the ring



K-means Clustering Can Easily Fail 

Using K-means clustering, specifying 2 clusters (so using 2 centroids) we
get the following: 

or something like this, depending on which choice is made for the
initial centroids



Can We Use a Spectral Approach? 
To do this, we first need a network, not just data. The easiest thing to
do is to construct a k-nearest neighbors graph. Treat each data point
as a node in a graph, then connect it with an edge to each of its k
nearest neighbors (in the potentially high dimensional space
in which the data exist). Typically, one uses k anywhere from 5 to 10.

In this example, the nodes on the outside will form a connected 
component and those on the inside will form another. 

A few edges shown
for ! = 2



An example of Spectral Clustering 
Since we are only separating the data into two components, we can use
Fiedler partitioning. That is:
(1) Using the graph, construct the adjacency matrix A
(2) Compute the graph Laplacian L
(3) Find the eigenvalues of L
(4) Find the Fiedler value and Fiedler vector
(5) Use the Fiedler vector to partition the graph into two modules
(6) Cluster the data according to which module they are in

If we wanted to split into more than 2 modules, then we would have used
the approach used earlier that involved more than one eigenvector of L.



What is a Community? 

Graph partitioning separates nodes, but the elements of each cluster
may have little interconnectivity. A community should have cohesion. 

Internal degree of a node in a
community: number of neighbors
inside the community

External degree of a node in a 
community: number of neighbors
outside the community

Community degree: the sum of the
degrees of the nodes in the community

Internal link density: ratio of the number of internal links and the maximum 
number of links that could exist between community nodes. This is
just the density of the community subnetwork.



What is a Community? 
A strong community is a subnetwork such that each node has more 
neighbors in the subnetwork than in the rest of the network.

A weak community is a subnetwork 
such that the sum of the internal
degrees of all nodes exceeds the
sum of their external degrees. 

All strong communities are weak communities, but not vice versa.



Where are the Communities Here?

Coauthorship network of researchers working on networks 

Easley and 
Kleinberg 2010



Data Clustering 

For graphs, a natural measure of similarity of nodes is structural equivalence,
which means the similarity or overlap between neighbors of the two nodes.

The similarity !"#of a pair of nodes i and j via structural equivalence is:

!"# =
number of neighbors shared by i and j

total number of distinct neighbors of i and j

Community detection is a special version of the more general problem of
data clustering, where data elements are grouped into clusters based on
some notion of similarity.

Example: if the neighbors of i and j are {89, 8;, 8<} and {89, 8;, 8>, 8?}, then

!"# =
2
5 = 0.4.

If two nodes shared no neighbors, then !"# = 0. If all neighbors are shared, 
then !"# = 1.



Data Clustering 
Similarity between two groups of nodes, !"and !#:

Measure the similarity of all pairs of nodes {%, '} with % ∈ !" and ' ∈ !#.

The group similarity is then *+,+- = Φ(*12) where the function Φ could
be  max1,2*12, or min1,2*12, or average *12 .

An agglomerative clustering technique iteratively merges groups of nodes
based on their similarity.  

Start with a trivial partition of N groups (each node is a group).

At each iteration, find the group pair with the greatest similarity and
merge those into a single group.

Repeat until all nodes are in the same group. 



How Does This Agglomerative Algorithm Do 
With Zachery’s Karate Club? 

Members of a karate club that ultimately split into two clubs following a 
dispute. One group sided with the club president (node 34) and the other 
with the club instructor (node 1).  

Easley and 
Kleinberg 2010



Hierarchical Clustering of Zachery’s Karate Club 

Dendrogram shows N partitions of the network. Each dashed slice yields
a partition. The top slice produces a partition with 2 clusters. The lower slice
produces a partition with 5 clusters. The algorithm is agglomerative: it builds
the dendrogram from the bottom up.



Hierarchical Clustering of Zachery’s Karate Club 

The algorithm has a hard time finding a cluster for node 9, so it stays isolated
from the other clusters until almost the end. When looking at a partition into
two clusters, node 9 is put in the group with the club president. But the person
actually went into the group with the club instructor. [Note that numbering
here starts at 0, while in network graph it started at 1.]

president instructor



Divisive Methods for Network Partitioning

Divisive methods erase edges to divide up the network  

Easley and 
Kleinberg 2010



Divisive Methods for Network Partitioning

Iteration 1: remove central link  

Easley and 
Kleinberg 2010



Divisive Methods for Network Partitioning

Subsequent iterations: remove links to other clusters  

Easley and 
Kleinberg 2010



The Girvan-Newman Divisive Method

Basic idea: Iteratively delete the edges containing the most “traffic”.

Easley and 

Kleinberg 2010

Consider each pair of nodes, A and B. Find the shortest path(s) between them. For 

each edge on such a path add one unit of flow. If there are two shortest paths, then 

edges on each get ½ unit of flow, etc. 

A

B
1

1
1

1



The Girvan-Newman Divisive Method

Sum the flows at each edge for all node pairs. This gives the betweenness
of each edge (previously we discussed betweenness of nodes).

Easley and 
Kleinberg 2010

49
33 33

33
33

12

12

12

12

12

12

12

12

1 1

11



The Girvan-Newman Divisive Method

Next, remove the edge with the greatest betweenness (or edges if there is
a tie).

Easley and 
Kleinberg 2010

This is the first level of partitioning of the graph.



The Girvan-Newman Divisive Method

Recalculate the betweenness, then iterate again, removing the edge(s)
with greatest betweenness.

Easley and 
Kleinberg 2010

This is the second level of partitioning.



The Girvan-Newman Divisive Method

Repeat until all edges have been removed, each time recalculating the
betweenness of all remaining edges.

Easley and 
Kleinberg 2010



Computing Edge Betweenness

Is there a good way to count all the shortest paths between nodes? Yes,
there is a clever process based on breadth-first search.

Easley and 
Kleinberg 2010

Perform a breadth-first search of the graph, starting at A

Determine number of geodesic paths from A to each other node

Based on these numbers, determine the amount of flow from A to 
all other nodes that use each edge

Do this for all other nodes and sum up flows.



Breadth-First Search

Rearrange graph into layers, with A at the top.

Easley and 
Kleinberg 2010

distance=1

distance=2

distance=3

distance=4



Counting Shortest Paths

Easley and 
Kleinberg 2010

Add up number of shortest paths, moving downward through the network.



Determining Flow Values

Easley and 
Kleinberg 2010

From bottom, K gets 1 unit of flow, divided equally along I-K and J-K

I gets 1 unit, plus the half unit passing through I to K, so 1 ½ total.
Edge F-I should get twice as much of this than G-I. So F-I gets 1 unit, G-I gets ½, 
and both get one unit for free.  

Continue working up through the graph to get all flows associated with node A.

Now repeat, centering on node B. Add flows together. Continue repeating and
summing. This gives betweenness values for all edges.  

number of 
geodesic paths

flow



This Method is also Hierarchical, but Builds the 
Dendrogram from the Top Down 

Dendrogram shows N partitions of the network. Each horizontal cut yields
a partition. The top cut produces a partition with 2 clusters. The lower cut
produces a partition with 5 clusters. This is divisive: the number of communities
grows as the algorithm is iterated.



Modularity of a Partition

How appropriate is our partition of the network into communities?
Are the communities really cohesive? What metric can be used to
know?



Modularity of a Partition
If ! is the total number of links in the graph, then the total number of stubs in 
the graph is 2!. Suppose a community C has total degree of #$. This is also the 
total number of stubs attached to nodes in C. If you randomly pick a stub in the
graph, what is the probability that it will be in C? 

C

#$
2!

For a random link to connect two nodes

in C, the probability is ≈ '(
)* +

'(
)* =

'(-
.*-

Since there are a total of L links in the
graph, the expected number that are in

C is '(
-

.*

If the actual number of links in C is !$ , then actual – expected number of links

in C is !$ − '(-
.* . The partition modularity can then be defined as

0 = 1
!2$

!$ −
#$)
4!

Larger Q values give 
more cohesive communities.



Modularity Optimization
The modularity can be computed for any partition of the network, 
regardless of how the partition was arrived at. Partition modularity can 
also be used as the basis for partitioning the network. A simple example of such 
a modularity optimization algorithm is the one described below:

Start with a partition in which each node is its own community.

1. Merge the pair of communities that gives the largest increase in modularity.

2. Repeat step 1 until there is a single community containing all the nodes.

This will again yield a sequence of N
partitions, forming a dendrogram. It
works from the bottom up, so is an
agglomerative algorithm.



Modularity Optimization

As the algorithm is iterated, the modularity first increases, then later decreases 
to 0. The “optimal partition” is typically taken to be the one where the 
modularity peaks.

N communities



Label Propagation

This is a simple and fast community detection method based on the idea that
neighbors usually belong to the same community. That is, most links are 
internal to a community.

Start with a partition of singletons. Each node is given a different label. Then
iterate over the following two steps. 

1. Sweep over all nodes in random order: each node takes the label shared
by the majority of its neighbors. If there is no unique majority, one of the 
majority labels is picked at random.

2. If every node has the majority label of it neighbors the system has reached
a steady state, so stop. Else, repeat step 1.

Communities are defined as groups of nodes with the same labels at steady state.

Is this an agglomerative or divisive algorithm?



Course Graining
Once you have partitioned the network into communities you can create
a course grained network in which each node is a community of the 
original network. The edges then reflect links between communities.
This can be a useful way to visualize the network interactions on a macro scale. 



The End


