
Graph Theory Fundamentals



Undirected Graphs
Edges have no direction

X Y



Graphs and Edge Lists
Throughout the semester, let n = number of nodes and m = number of edges

n=4
m=3

Edge list: (1,4), (2,4), (3,4)

Edge lists can get really long for big graphs

1 2

3 4

Two nodes connected with an edge are called neighbors



The Adjacency Matrix (A)
A weighted graph has weights on the edges. In an unweighted graph all edges 
have weight of 1.

The adjacency matrix for a graph is n X n and each element contains 0 for 
non-neighbors and the edge weight for neighbors. 

A =



Properties of the Adjacency Matrix
1. It is symmetric (! = !#)
2. For a simple graph, with no self-edges, elements on main diagonal are 0
3. If the graph is not simple, then the matrix element for a node with a self-

edge is represented by 2*(edge weight).



Directed Graphs
Edges have arrows giving direction

A

B C

D

E

F
G



Directed Graph with Adjacency Matrix

!"# = 1 if there is an edge from node 3 to node j
(this convention is not universal)

A self-edge just gets the weight of the edge

The adjacency matrix of a directed graph is usually  not symmetric

To

From

A =

0 1 1 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 1 0 0 0



Hypergraphs and Bipartite 
Graphs



A Hypergraph Indicates Group Inclusion 

The nodes could represent actors and the groups could represent movies.
There are no standard edges in a hypergraph. Each closed curve is
called a hyperedge. 



Another Way: Bipartite Graphs

From Luke (2015)

Example of a bipartite graph in which there are two types of vertices: 

The “actors” connect to the “groups”, but there are no actor-actor or 

group-group connections 



Bipartite Graphs are an Alternative to 
Hypergraphs 

Two types of nodes: one represents groups and the other actors.
No edge between nodes of the same type.
This is an example of a two-mode graph. 

Groups Actors



The Incidence Matrix (B) Contains the Bipartite 
Graph Structure 

This is a g X r matrix where g = number of groups and r = number of 
actors. Then !"# = 1 if actor j belongs to group i.  

Actors

Groups

The incidence matrix is typically not square

B  =

1 1 0 0
1 1 0 0
0 0 1 1
0 1 0 0
1 0 0 1

Groups Actors



One-Mode Projections of a Bipartite Graph 

Groups Actors

Suppose we want to indicate which actors are related by appearing in the
same movie (or group)? We can just connect such actors by edges. This is
an example of a one-mode projection of the bipartite graph according to actors.

1 2

3 4



Weighted One-Mode Projection According to 
Actors 

Groups Actors

The edge weights indicate the number of times neighbors appeared together
in a movie. 

1 2

3 4

2

1

1



Adjacency Matrix for a One-Mode Projection

1 2

3 4

This symmetric matrix is r X r, where r is the number of actors

Ar =

0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0



Weighted Adjacency Matrix for a One-Mode 
Projection

!"# =

1 2

3 4

2

1

1

0 2 0 1
2 0 0 0
0 0 0 1
1 0 1 0



There is a Second One-Mode Projection

Groups Actors

This one-mode projection is done according to the groups (e.g., which
movies have a common actor).  

1

2

34

5



And a Second Adjacency Matrix

This symmetric matrix is g X g, where g is the number of groups.

0 2 0 1 1
2 0 0 1 1

0 0 0 0 1
1 1 0 0 0
1 1 1 0 0

1

2

34

5

21

1

11

!"# =

1



How are !, "#$, and "%$ Related?

Actors i and j are both in group k if Bki=1 and BKj=1. That is, if
BKiBkj=1. The number of groups they share is then 

&'( = *
+,-

%
!+'!+( = *

+,-

%
!'+. !+(

The r X r matrix P is then & = !.!. This has the right dimensions as
"#$, but is it the same?

No! Since "#$ has 0 down the main diagonal, while 

&'' = *
+,-

%
!+'!+' = *

+,-

%
!+'/

This is the square sum down column i of !, and is related to the number 
of groups that actor i is in, which is usually non-zero. So set diagonal 
elements of & to 0.



How are !, "#$, and "%$ Related?

"#$ = ' = !(! with ')) ≡ 0

And if we define the g X g matrix ', = !!( then ')), = the square row 
sum across row i of !, which is the number of actors in group i (not usually 
0, as are diagonal elements of "%$). So set diagonal elements of ', to 0.

"%$ = ', = !!( with ')), ≡ 0

Thus, the adjacency matrices corresponding to the two one-mode
projections can be calculated directly from the incidence matrix,
without having to construct the network diagrams.



Paths and Connectivity



Path Through a Graph

A path from node A to node  B is just a sequence of nodes that starts at 
A and ends at B such that each consecutive node pair is connected by an edge.
There may be many paths between two nodes, or there may not be any. A
path is called simple or self-avoiding if it does not repeat any nodes.

Example of a simple path between a and h



How Many Paths Are There?

There may be many paths between any two nodes. In the graph below,
here is a simple path (a,f,c,b,h) from node a to h and another simple 
path (a,f,c,d,e,b,h), but also the non-simple path (a,f,c,d,e,b,c,d,e,b,h). 
There are an infinite number of non-simple paths from a to h due to 
the cycle c, d, e, b. 

Example of a simple path from node a to h



A Cool Theorem on Path Cardinality

Theorem: The i,j-entry of !" equals the number of paths of length k from
node i to node j. 

Note: these paths include both simple and non-simple ones.

Proof: The proof proceeds by induction.

The # = 1 case comes directly from the definition of adjacency matrix !.

Assume that the statement is true for !" and look at the i,j-entry of !"&'.
By the definition of matrix multiplication,

!"&' = !"!
so                                !"&' )* = !" )'!'* + !" ),!,* + ⋯+ !" ).!.*

Since !" )/ is the number of paths of length k from node i to node p
and !/* = 1 if and only if there is an edge from node p to node j (and

0 otherwise), then !" )/!/* is the number of paths of length # + 1 from 

i to j that go through p. The sum on the right adds these up over all nodes p, 
and is therefore the total number of paths of length # + 1 from node i
to j as desired.



Another Cool Theorem on Triangles

Theorem: The number of triangles of a graph equals !" Tr %
& . 

1

2

3

4

Graph with one triangle, 
comprised of nodes 1, 2, 4.



Another Cool Theorem on Triangles

Theorem: The number of triangles of a graph equals !" Tr %
& . 

Proof: A path of length 3 from a node to itself is a triangle, and that triangle
actually yields two paths, one in each direction. Therefore, if node i is 
contained in a triangle then %& '' = 2. Then Tr %& equals twice the number
of nodes contained in triangles. However, since each triangle contains 3 nodes,
it follows that Tr %& equals six times the number of triangles. Thus, the number
of triangles is !" Tr %

& .

Recall that Tr % = %!! + %,, + ⋯+ %..



Length of a Path and Distance

The length of a path is the number of edges from beginning to end. 
The distance between two nodes A and B is the length of the shortest
path between them. 

Graph of the ARPANET from 1970. What are the simple paths between 
Univ. California Santa Barbara (UCSB) and the Rand Corporation (RAND)?
How long are these paths? What is the distance between UCSB and RAND?



Breadth-First Search
In a small graph finding the distance between two nodes is easy. It is
not so trivial for a large network, where visualization does not work.
A useful algorithm is called a breadth-first search, which is illustrated
below for a 15-node undirected graph. 



Cycles

A cycle is a path with at least three edges, in which the first and last node
are the same and no node (except the first/last) is repeated. This gives a ring 
structure to the nodes in a cycle.

What are some of the cycles involving UCSB in the ARPANET graph? 



Cycles and Redundancy
If a sequence of nodes form a cycle, then any connecting edge can 
be removed and there will still be a path between any pair of nodes. In
terms of a communication network or transportation network, this is an
example of redundancy. If one of the communication lines (or roads)
breaks it won’t leave anyone stranded. Alternate routes could be used
to get between any pair of nodes.

If the link between UCSB and UCLA goes down, there are still paths
between routers at these universities. 



Connected Graphs
A graph is connected if there is a path between every pair of nodes. 

The 1970 ARPANET network is connected. Why should we expect 
most communication and transportation networks to be connected?

Should we expect social networks to be connected? How about
biological networks?



Components

A connected component (or just component) of a graph is a subset of
the nodes such that:

(1) every node in the subset has a path to every other node
(2) the subset is not part of some larger set with the property that

every node can reach every other.  That is, it is a maximal subset.

How many components are there in this collaboration network of
the biological research center Structural Genomics of Pathogenic Protozoa?

Easely and Kleinberg, 2010



Block Diagonal Adjacency Matrix
The nodes in a graph with p components can be numbered so that the 
adjacency matrix has a block diagonal form with p blocks. That is, A is a 
matrix with smaller square matrices along the main diagonal, and off-
diagonal elements of 0.



Giant Components

Easely and Kleinberg, 2010

The network above describes dating patterns among students over an
18-month period. There are many components, but one is much larger
than the others. This is an example of a giant component, which is 
just a really large component. Such things are typical in networks with 
more than one component.

Why is there a giant component in this network? Why would a
typical communication network or transportation network
have a giant component?



Can There Be Multiple Giant Components?

Suppose a network with 250 nodes has two giant components, each with 
100 nodes. How many ways are there for this to collapse into a single
giant component? 

1002=10,000

Having more than one giant component is very unlikely since all it takes
is one connection from one giant component to another for the two
giant components to collapse into one component, and since there are 
lots of nodes in the components there are lots of ways to connect them.



Some Examples of Giant Components in 
Networks
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1. Film actors 5. Internet
2. Math coauthorship 6. Power grid
3. Student dating 7. Metabolic network
4. WWW (weakly connected)  8. Protein interactions  



Connectedness of a Directed Graph

A directed graph is strongly connected if you can get from one 
node to any other by following the arrows. 

This graph has three strongly connected components. What 
are they? 



Connectedness of a Directed Graph

A directed graph is weakly connected if when you remove the 
arrow from the edges the resulting undirected graph is 
connected.

This graph is weakly connected. 



Out-Component of a Node in a Directed Graph

The set of nodes you can reach from node N by following the 
arrows is the out-component of node N.  

Out-component of node B



In-Component of a Node in a Directed Graph

The set of nodes that can reach node N by following the arrows is 
the in-component of node N.  

In-component of node B



In-Component/Out-Component Intersection
The strongly connected component of a directed graph that 
contains node N is the intersection of the node’s in-component 
and out-component.   

Nodes B-C-D-E are the strongly connected component containing B.



Planar Graphs and Trees



River Networks
The Congo River

Asante & Maidment, 1999 

Nodes are bifurcation points and endpoints
Edges are spans of the river



What are Some Properties?

Edges don’t cross – such a graph is
called a planar graph

There are no cycles – such a graph
is called a tree

The graph is connected

A disconnected graph with the latter two properties is just a collection
of trees … called a forest.



Are All Trees Planar Graphs?

Yes! If an edge crosses another just move one of the connecting nodes.



Are All Planar Graphs Trees?

No! Lots of cycles in this planar graph

Nodes are midpoints of states
Edges are connections between adjacent states



What Does a Non-Planar Graph Look Like?

Can you redraw the edges in B so that they don’t intersect?



How Many Paths Are There Between Any Two 
Nodes in a Tree?

Looks like exactly 1 path between any two nodes



Proof That There is Exactly One Path Between 
Any Two Nodes of a Tree

Let T be a tree and A and B any two nodes in T.

If there is no path between A and B then T is
disconnected, contradicting the statement 
that T is a tree. 

Suppose there are two or more paths between A and B, and consider
path p1 and path p2.

Follow p1 from A to B and then p2 from B to A. This forms a cycle,
contradicting the statement that T is a tree. 

Therefore, using proof by contradiction, a tree has exactly one path between
any two nodes.



How Many Edges Are There in a Tree?

Looks like edge number is 1 less than node number



Proof That a Tree With n Nodes Has n-1 edges

Let T be a tree with n nodes and m edges.

Suppose that m is smaller than n-1. Then there
are not enough edges to connect all the nodes
and T is disconnected. This contradicts the
statement that T is a tree.

Suppose that m > n-1. The n-1 of these edges can be used to connect all the nodes
of T, with a few left over. Connecting any two nodes with any one of these remaining
edges would form a cycle, contradicting the statement that T is a tree.  

Therefore, using proof by contradiction, a tree with n nodes has exactly n-1 edges.



A Spanning Tree of an Undirected Graph

A spanning tree of a graph is a subgraph containing all the nodes
and just enough edges so that the nodes remain connected. This 
subgraph is a tree.

All connected undirected graphs have at least one spanning tree.



A Family Tree

This is an example of a rooted tree, where one node (or node pair in
this case) is at the top (and called the root) and others are below.

All trees can be expressed as rooted trees.



Organizational Charts are Typically Trees 



The Degrees of Nodes and 
Graphs



Degree of a Node in an Undirected Graph 

The degree of a node is just the number of edges connected to it.



The Strength in an Weighted Graph 

The strength of a node is the sum of the weights associated with
all edges connected to it.

2
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1

7
2 13

5

8
Black: degree
Green: weight
Cyan: strength



Relationship Between Degree and the Adjacency 
Matrix 

1

2

3

4

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

A =

Row sum = 2

Column sum = 2



Relationship Between Degree and the Adjacency 
Matrix 

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

A =

Row sum = 2

Column sum = 2

di = degree of node i = row sum of row i = column sum of column i

!" = $
%&'

(
)"% = $

%&'

(
)%"



Degree of an Undirected Graph (G)

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

A =

degree(G) = sum of all elements of A

degree(G) = ∑"#$% &"

degree(G) = 2m, since each edge is counted twice

c = mean degree(G) = degree(G)/n so c= ()
%



Complete Graphs 
Mean degree tells us how connected the nodes are on average. But if
c = 2.7 does that mean the graph is densely or sparsely connected?

This depends on how connected it could be

A complete graph (Kn) has the maximum possible number of edges
(assuming the graph is simple)



Complete Graphs 

m(K2) = 1
m(K3) = 3
m(K4) = 6

m(Kn) = !
" = $

" %(% − 1)

Recall that !
* ≡ !!

*! !-* !



Degree of Complete Graphs 

m(Kn) = !
" = $

" %(% − 1)

* = 2,
% = % − 1

Each node has the same degree, which is the mean degree!

-. = % − 1 for each i



Subgraphs 
A subgraph or subnetwork is obtained by selecting a subset of the nodes
of a graph and all of the edges among those nodes. 

A clique is a fully connected subgraph of a graph (i.e., a complete
subgraph). If the original graph is itself complete, then all subgraphs
of it are cliques. 



Graph Density 

The graph density is the ratio of number of edges to the possible 
number of edges

! ≡ # $
# %&

= #
&
(
= 2#

*(* − 1)

and in terms of mean degree,

! = /
* − 1



Graph Density Examples 

! = #
$ − 1

# = 8
5

! = )85 4 = 2
5

# = 4

! = 4
4 = 1 Max density



Degree of a Node in a Directed Graph 

Each node of a directed graph has an in degree (number of incoming
edges) and an out degree (number of outgoing edges).

1

2 3

4 5

!"#$ = 1
!"'() = 2

!+#$ = 2
!+'() = 1



Relationship to Adjacency Matrix 
1

2 3

4 5

0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

1 0 0 0 0

A =

in degree = column sum

out degree = row sum



Relationship to Adjacency Matrix 

0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

A =

In degree = column sum

Out degree = row sum

!"#$% = '
()*

+
,"( Row sum

!""+ = '
()*

+
,(" Column sum



Degrees of a Directed Graph (G) 

0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

A =

!"#$ = &
'()

*
+'"#$ = &

'()

*
&
,()

*
-',

!'* = &
'()

*
+''* = &

'()

*
&
,()

*
-,'

!"#$ = !'* = .



Mean Degree of a Directed Graph 

!"# ≡ 1
&'"()

#
*""# =

1
& ,

"#

!-./ ≡ 1
&'"()

#
*"-./ =

1
& ,

-./

but ,"# = ,-./ = 0

so !"# = !-./ = !

and ! = 0
&

This is half of what it would be if edges were not directed 



Graph Density of a Directed Graph 

Starting with the definition of graph density as the ratio of number 
of edges to the possible number of edges, note that between any
2 nodes there are now 2 possible edges. So

! ≡ # $
# %&

= #
2 &

)
= #

*(* − 1)

and in terms of mean degree,

! = /
* − 1

This is the same formula as for an undirected graph.



The End


