Random Networks



The Erdos-Rényi Model
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The Pioneers

Paul Erdos (1913-1996) was a Hungarian mathematician who

published around 1500 mathematical papers over his long
career.
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Peter L. Montgomery

The Erdds number refers to the length of

9_ i ! i ‘] the geodesic path connecting an author to

Erdds, where an edge means a collaborative
papetr.

Peter M. Winkler

Peter Bartenstein Walter Zieglgansberger



The Pioneers

Alfréd Rényi (1921-1970) was a Hungarian mathematician
who published in the area of graph theory and probability,
including a number of papers on random graphs with Erdés.

If | feel unhappy, | do mathematics
to become happy. If | am happy, | do
mathematics to keep happy.
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Reason for Studying Random Networks

There are many ways to generate random graphs that have different
degree distribution, clustering, community number, etc. The reason
for examining these is that they allow us to examine the effects of such
properties rather than the specific connectivity pattern among nodes.



An Erdos-Rényi (E-R) Random Graph

For each of the n nodes, connect with each other node with probability p.
This is denoted as G(n,p). This typically does not allow for self-edges.
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This is an example of the first step in creating a G(5,p) graph, where edges
connecting to node 1 are determined. This would proceed onto node 2,
noting that the connection (or not) to node 1 has already been determined.

One could create an ensemble of such graphs, each time using a different
set of random numbers to pick edges.



Mean Number of Edges
How many node pairs in G(n,p)? (g)

What is the probability that a pair will be connected? P

What is the mean number of edges? (;) p

m) = (3)7

Mean edge number of G(n,p)



Mean Degree

With this algorithm, what will be the degree of a typical node in an E-R graph?
That is, what is the mean degree?

What is the mean degree of a graph with n nodes and m edges? c= sz

What is the average of this over the ensemble of networks?

-

n

2
= —(m) since n is constant across the ensemble
n

2
Ok

2n(n—1)
T 2

c=m—-1p

Mean degree of G(n,p)
=(n—1)p



Mean Degree

c=mm—-—1p

Mean degree of G(n,p)

This is very intuitive: each node can connect to n — 1 other nodes, and the
probability of doing so is p. So the formula for mean degree makes good sense.



Scaling of Means with n

Mean number of edges: (m) = (g)p

_nn—-1)
2

~ Enzp for large n

Mean degree: c=mMm—-1p

~ Nnp for large n




The Full Degree Distribution

We have a formula for the mean degree, but can we come up with the full
degree distribution for a graph G(n,p)?

For any node, the probability of connecting with exactly k other nodes is

p(1—p)n 7k
. n—1
How many ways are there to pick the k nodes to connect to? ( )

k

So probability of having degree k is

Pe=("7 ok —pnt

Degree distribution of G(n,p)



Binomial Degree Distribution

This is just the binomial distribution, with N =n — 1

N _
Pe= ()P (="
Degree distribution of G(n,p)

and the mean of such a distribution is Np, as we determined for G(n,p).

Binomial Distribution (n = 20, p = .25)
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Comparison with Real-World Networks

In the limit of large n, a binomial distribution converges to a normal distribution

Binomial and Normal pdfs
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How does this degree distribution compare to that of real-world networks?



Comparison with Real-World Networks
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In an E-R network, most nodes have degree near the mean. In scale-free
networks like many real-world networks, most nodes have degree far below
the mean of the distribution. There are many nodes with low degree

and a few with very high degree.



Clustering Coefficient of an E-R Network

Recall that the clustering coefficient is the probability that two neighbors
of a node are neighbors of each other. What is the mean clustering
coefficient for an E-R network?

The mean degreeisc = (n— 1)p,sop = ni—l Since p is the probability
that any two nodes are neighbors in an E-R network, this is the clustering
coefficient.

Clustering coefficient of an E-R network

Note that the clustering coefficient, p, is the same regardless of the number
of nodes in the network.

Most real-world networks have relatively large clustering coefficients. For
example: for co-authorship of scholarly papers, C = 0.6

for the film actor network, C = 0.2
With these large values, it is extremely unlikely that these are E-R networks.



The Configuration Model
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Another Type of Random Network

The E-R model is just one type of random network, where the node
degrees have a binomial distribution. That is, each node is pretty similar
to any other node. There are no hubs.

Real-life networks, in contrast, typically have a power law degree
distribution; most nodes have low degree, but there are a few hubs with
very high degree.

The configuration model is an algorithm for constructing networks with
any degree distribution, including power law distributions. It was first
used in 1980.



Step 1: Select a Degree Sequence

Number the nodes from 1 to n. For each node, determine its degree by
sampling from the desired degree distribution.

Number of Nodes

100 200 300 400 500 600
Node Degree

In this example, with 500 nodes, the probability that a node has

degree lisp; = % = 0.7. The probability it has degree 2 is
50

P2 = o0 = 0.1. Because these are probabilities, p; + p, + -+ p,,_1 = 1.



Step 1: Select a Degree Sequence

P1 P2

'

For each node, pick a random number r € [0,1]. If r < 0.7 then the degree
of the node is 1. If r € [0.7,0.8] then the degree of the node is 2. Similarly
for other values of r.

Sampling in this way will give a network with degree distribution similar to
what was desired.

The sum of the degrees must be even. If not, increase the degree of a
randomly-chosen node by 1.



Step 2: Attach “Stubs” to the Nodes

If a node has degree d, then it gets d stubs.



Step 3: Match the “Stubs” to Form Edges

At each stub, randomly match it with another stub. Connect these
with an edge.



Step 3: Match the “Stubs” to Form Edges

Some self-edges and multi-edges will likely be formed, and this is
probably not desired. However, for large networks these are negligible,

so don’t worry about them.
2\
\
\ Multi-edge



A Scale-Free Network witha = 2 andn = 100

Hubs have high degree

Many low-degree nodes

164 edges



An E-R Network with p = 0.035 and n = 100

Degree not very high
for any node

-

' ! | Fewer low-degree nodes

157 edges
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Comparison of Degree Distribution
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Dynamic Networks




Where do Scale Free Networks Come From?

They are present in virtually every type of network. Why?

The “rich get richer” phenomenon really does seem to apply in many
situations, including networks.

We have focused so far on , Where the number of nodes is
fixed. But how does the network develop? When a new node is added,
how does it get attached to other nodes? Such networks, where nodes
or edges change over time, are called dynamic networks.



Preferential Attachment

Preferential attachment was first used in the Bible in the Gospel

of Matthew: “For every one who has will more be given, and he will have
abundance; but from him who has not, even what he has will be

taken away”. For this reason, preferential attachment is sometimes

called the “Matthew Effect”.

When an edge is connected from a new node to some other node in the
existing network, target those nodes that already have a lot of edges.



Barabasi-Albert Model

The Barabasi-Albert (BA) model, published in 1999, is the best-known
dynamic network model that incorporates preferential attachment.

Start with a complete graph with n, nodes. At each iteration do the
following two steps:

1. Anew nodeis added to the network, with m < n, links attached to it.
This m will become the average degree of the full network.
2. Each new link is wired to an old node j with probability

kj

Yk

where k; is the degree of node j and the denominator is the sum of the
degrees of all nodes except i.

Continue until the desired number of nodes N and their edges have been added.
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The Rank Model

As a model for the growth of a network, the BA model suffers from one
seemingly unrealistic assumption: It assumes that the new node knows
the degrees of all the other nodes in the network.

When a new web site is established, it likely links to several other
popular web sites, simply because the designer of the site knows
about them. Less popular sites just are not known, so no linkage will
be made. This is preferential attachment, but the designer did not
know the degree of the nodes, just an implicit ranking of the nodes.
Links are made to those at the top of the ranking.



The Rank Model

Start with a small graph with n, nodes. Some property of the nodes, such
as degree or fitness, is selected to rank the nodes. At each iteration, do
the following:

1. All nodes are ranked. Nodes are assigned ranks R = 1, 2, ... Node [
receives a rank of R;.
2. Anew nodeis added to the network, with m < n, new links attached.
3. Each new link from i is wired to an old node j with probability
R7¢
lj Zl Rl—a

The nodes may have to be re-ranked after an iteration if the addition of the
new node changed the ranking.

The parameter @ > 0 adjusts the extend of preferential attachment. With
larger values, only the most highly ranked nodes will get linked to.



The Random Walk Model

Besides a scale-free degree distribution, real networks often have high
local clustering. Does a BA or rank model provide this feature? No

The random walk model enforces a desired level of local clustering.



The Random Walk Model

Start from any small network. For each iteration do the following steps:

N

A new node i is added, with m > 1 new links attached to it.
The first link is wired to an old node j, chosen at random.
Each other link is attached to a randomly selected neighbor of j, with

probability p, or to another randomly selected node, with probability
1—np.

random
target

o random
.
| |

target




The Random Walk Model

The degree of triadic closure is specified through parameter p.

p = 0 : There is no enforced closure so nodes are linked at random.
p = 1: All links except for the first one are wired to neighbors of the
initially selected node, thus maximally closing triangles.

What about the degree distribution? Does this model produce
preferential attachment? Yes

Nodes with high degree are neighbors to many other nodes, so they
will get chosen more frequently as “neighbors of j” than nodes with
low degree and not many neighbors.



Network Resilience

(a) p=~ 0.21 (b) p~ 0.44



How Resilient is a Network to Loss of Nodes?

Most real-life networks have a single giant component, and then several
minor components. If one starts removing nodes either randomly or
according to some algorithm, how many nodes can be removed before the
giant component disintegrates?

The sequential removal of nodes from a network (and the associated
edges) is called node percolation, where the fraction of nodes not removed
() is called the occupation probability. If = 1, then all nodes remain, if
¢ = 0, then all nodes are removed.

When the network contains a giant component it is said that it percolates.
A percolation transition occurs when this giant component disintegrates.
The value of ¢ at which the percolation transition occurs is called the
percolation threshold.
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Error and attack tolerance
of complex networks

Reéka Albert, Hawoong Jeong & Albert-Laszlo Barabasi

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
the robustness of the underlying metabolic network'. Complex
communication networks’ display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
itis displayed only by a class of inhomogeneously wired networks,

NATURE|VOL 40627 JULY 2000 | www.nature.com




Approach and Central Question

Approach: Use the configuration model to create random scale-free
networks and the E-R model to create random networks with binomial
degree distribution (they call these “exponential networks” because the

fraction of nodes with degree d declines approximately exponentially
when d > (d)).

Question: Which type of network is most resilient to node removal?
More precisely, which type has a higher percolation threshold?



Their Definition of Network Diameter

Shortest path from node 1 to node 6 is (1,5,4,6), path length=3

Do this calculation for all node pairs and sum

Divide by the number of node pairs to get diameter d
(this is the mean geodesic path length of the network)

Only computed for nodes within the giant component



The Scale-Free Network is More Resilient to
Random Failure Than the Exponential Network
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But the Scale-Free Network is More Vulnerable
to Attack Than the Exponential Network
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Giant Components

/H\'V
Eps2c

*—oe

S = Fraction of nodes in the giant component
<s>= mean size of an isolated (non-giant) component



In an Exponential Network There is No
Difference Between Failure and Attack on

Giant Component Size
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In an Exponential Network the Network
Disintegration is Roughly Homogenous

100F © a [10°F °_ b|10°F © c

0% % 102 i Component size
107 o[107¢ 10 B distribution

10_@3“.1 PREETI EPRETTI EERETTI BT | * ; : l
-100 102 104 109 107 102 102 0 2 4

& Q
‘ Attack © O o © o
Exponential »- o OO = o2 o
network . - o
Failure oo O C?o o, 7o
/ Q O o oo
S O

Q

fo

15

#=0.05 F=0.18 £=0.45



In a Scale-Free Network There is a Big
Difference Between Failure and Attack on

Giant Component Size
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In a Scale-Free Network the Network
Disintegration in Response to Failure is Very
Heterogeneous
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Degree Distribution of the Internet Obeys a
Power Law for k>1
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In-Degree and Out-Degree Distributions of
the WWW Obey Power Laws
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The Internet and WWW are Resilient to
Random Failure, but Sensitive to Attack
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Internet data: 6,209 nodes and 12,200 edges
WWW data: 325,729 nodes and 1,498,353 edges



In the Internet and WWW There is a Big
Difference Between Failure and Attack on Giant
Component Size
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The End



