
Random Networks



The Erdós-Rényi Model



The Pioneers

Paul Erdós (1913-1996) was a Hungarian mathematician who 
published around 1500 mathematical papers over his long 
career. 

The Erdós number refers to the length of 
the geodesic path connecting an author to
Erdós, where an edge means a collaborative 
paper.



The Pioneers

Alfréd Rényi (1921-1970) was a Hungarian mathematician 
who published in the area of graph theory and probability, 
including a number of papers on random graphs with Erdós.



Reason for Studying Random Networks

There are many ways to generate random graphs that have different 
degree distribution, clustering, community number, etc. The reason
for examining these is that they allow us to examine the effects of such
properties rather than the specific connectivity pattern among nodes.



An Erdós-Rényi (E-R) Random Graph
For each of the n nodes, connect with each other node with probability p.
This is denoted as G(n,p). This typically does not allow for self-edges.
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This is an example of the first step in creating a  G(5,p) graph, where edges
connecting to node 1 are determined. This would proceed onto node 2,
noting that the connection (or not) to node 1 has already been determined.   

One could create an ensemble of such graphs, each time using a different
set of random numbers to pick edges.



Mean Number of Edges

p
p

p

p

1

2

3

45

How many node pairs in G(n,p)? !
2

What is the probability that a pair will be connected? #

What is the mean number of edges? !
2 #

$ = !
2 #

Mean edge number of G(n,p)



Mean Degree
With this algorithm, what will be the degree of a typical node in an E-R graph?
That is, what is the mean degree?

What is the mean degree of a graph with n nodes and m edges? c= "#
$

What is the average of this over the ensemble of networks?
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Mean degree of G(n,p)



Mean Degree

This is very intuitive: each node can connect to ! − 1 other nodes, and the
probability of doing so is p. So the formula for mean degree makes good sense.

$ = ! − 1 &

Mean degree of G(n,p)



Scaling of Means with n
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The Full Degree Distribution

We have a formula for the mean degree, but can we come up with the full 
degree distribution for a graph G(n,p)?

For any node, the probability of connecting with exactly k other nodes is

!"(1 − !)'()("

How many ways are there to pick the k nodes to connect to?
* − 1
+

So probability of having degree k is

," = * − 1
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Degree distribution of G(n,p)



Binomial Degree Distribution

This is just the binomial distribution, with ! = # − 1

&' = !
( )'(1 − )),-'

Degree distribution of G(n,p)

and the mean of such a distribution is Np, as we determined for G(n,p).

mean



Comparison with Real-World Networks

In the limit of large n, a binomial distribution converges to a normal distribution

How does this degree distribution compare to that of real-world networks?



Comparison with Real-World Networks

In an E-R network, most nodes have degree near the mean. In scale-free
networks like many real-world networks, most nodes have degree far below
the mean of the distribution. There are many nodes with low degree
and a few with very high degree.



Clustering Coefficient of an E-R Network

The mean degree is ! = # − 1 &, so & = '
()*. Since p is the probability

that any two nodes are neighbors in an E-R network, this is the clustering
coefficient.

Recall that the clustering coefficient is the probability that two neighbors
of a node are neighbors of each other. What is the mean clustering 
coefficient for an E-R network? 

+ = & = !
# − 1

Clustering coefficient of an E-R network

Most real-world networks have relatively large clustering coefficients. For
example:     for co-authorship of scholarly papers, + = 0.6

for the film actor network, + = 0.2
With these large values, it is extremely unlikely that these are E-R networks.

Note that the clustering coefficient, p, is the same regardless of the number
of nodes in the network. 



The Configuration Model



Another Type of Random Network

Real-life networks, in contrast, typically have a power law degree 
distribution; most nodes have low degree, but there are a few hubs with 
very high degree.

The E-R model is just one type of random network, where the node 
degrees have a binomial distribution. That is, each node is pretty similar
to any other node. There are no hubs. 

The configuration model is an algorithm for constructing networks with
any degree distribution, including power law distributions. It was first 
used in 1980.



Step 1: Select a Degree Sequence
Number the nodes from 1 to n. For each node, determine its degree by
sampling from the desired degree distribution.

In this example, with 500 nodes, the probability that a node has 
degree 1 is !" = $%&

%&& = 0.7. The probability it has degree 2 is

!* = %&
%&& = 0.1. Because these are probabilities,  !" + !* + ⋯+ !./" = 1.



Step 1: Select a Degree Sequence

For each node, pick a random number ! ∈ 0,1 . If ! < 0.7 then the degree
of the node is 1. If ! ∈ 0.7,0.8 then the degree of the node is 2. Similarly
for other values of r.

0 10.7 0.8

p1 p2

Sampling in this way will give a network with degree distribution similar to
what was desired.

The sum of the degrees must be even. If not, increase the degree of a 
randomly-chosen node by 1.



Step 2: Attach “Stubs” to the Nodes

If a node has degree d, then it gets d stubs.
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Step 3: Match the “Stubs” to Form Edges

At each stub, randomly match it with another stub. Connect these 
with an edge. 
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Step 3: Match the “Stubs” to Form Edges
Some self-edges and multi-edges will likely be formed, and this is
probably not desired. However, for large networks these are negligible,
so don’t worry about them.
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A Scale-Free Network with ! = 2 and $ = 100

Hubs have high degree

164 edges

Many low-degree nodes



An E-R Network with ! = 0.035 and ' = 100

Degree not very high
for any node

157 edges

Fewer low-degree nodes



Comparison of Degree Distribution

Scale-free network E-R network

degree

Mean degree=3.14Mean degree=3.08



Dynamic Networks

?



Where do Scale Free Networks Come From?

They are present in virtually every type of network. Why? 

The “rich get richer” phenomenon really does seem to apply in many 
situations, including networks. 

We have focused so far on static networks, where the number of nodes is
fixed. But how does the network develop? When a new node is added,
how does it get attached to other nodes? Such networks, where nodes
or edges change over time, are called dynamic networks. 



Preferential Attachment
Preferential attachment was first used in the Bible in the Gospel
of Matthew: “For every one who has will more be given, and he will have
abundance; but from him who has not, even what he has will be
taken away”. For this reason, preferential attachment is sometimes 
called the “Matthew Effect”.

When an edge is connected from a new node to some other node in the
existing network, target those nodes that already have a lot of edges.



Barabási-Albert Model

The Barabási-Albert (BA) model, published in 1999, is the best-known
dynamic network model that incorporates preferential attachment. 

Start with a complete graph with !" nodes. At each iteration do the
following two steps:

1. A new node i is added to the network, with # ≤ !" links attached to it. 
This m will become the average degree of the full network. 

2. Each new link is wired to an old node j with probability

%&' =
)'
∑+ )+

where )' is the degree of node j and the denominator is the sum of the 
degrees of all nodes except i.

Continue until the desired number of nodes N and their edges have been added.



Barabási-Albert Model

(a) Network build using the BA model (with preferential attachment)
(b) Network built with uniform probability of attachment

N=2000 nodes
< " > = 2

Linear in log-log
plot means scale free



The Rank Model

As a model for the growth of a network, the BA model suffers from one
seemingly unrealistic assumption: It assumes that the new node knows
the degrees of all the other nodes in the network.  

When a new web site is established, it likely links to several other
popular web sites, simply because the designer of the site knows 
about them. Less popular sites just are not known, so no linkage will
be made. This is preferential attachment, but the designer did not
know the degree of the nodes, just an implicit ranking of the nodes.
Links are made to those at the top of the ranking.  



The Rank Model

Start with a small graph with !" nodes. Some property of the nodes, such

as degree or fitness, is selected to rank the nodes. At each iteration, do

the following: 

1. All nodes are ranked. Nodes are assigned ranks # = 1, 2, … Node )
receives a rank of #*.

2. A new node i is added to the network, with + ≤ !" new links attached.

3. Each new link from i is wired to an old node j with probability

-./ =
#/01
∑* #*01

The parameter 3 > 0 adjusts the extend of preferential attachment. With

larger values, only the most highly ranked nodes will get linked to. 

The nodes may have to be re-ranked after an iteration if the addition of the

new node changed the ranking.



The Random Walk Model
Besides a scale-free degree distribution, real networks often have high
local clustering. Does a BA or rank model provide this feature? No

The random walk model enforces a desired level of local clustering. 



The Random Walk Model
Start from any small network. For each iteration do the following steps:

1. A new node i is added, with ! > 1 new links attached to it.
2. The first link is wired to an old node j, chosen at random.
3. Each other link is attached to a randomly selected neighbor of j, with

probability p, or to another randomly selected node, with probability
1 − %.



The Random Walk Model

The degree of triadic closure is specified through parameter p.  
! = 0 : There is no enforced closure so nodes are linked at random. 
! = 1 : All links except for the first one are wired to neighbors of the
initially selected node, thus maximally closing triangles. 

What about  the degree distribution? Does this model produce
preferential attachment? Yes

Nodes with high degree are neighbors to many other nodes, so they 
will get chosen more frequently as “neighbors of j” than nodes with 
low degree and not many neighbors.



Network Resilience



How Resilient is a Network to Loss of Nodes?

Most real-life networks have a single giant component, and then several 
minor components. If one starts removing nodes either randomly or
according to some algorithm, how many nodes can be removed before  the
giant component disintegrates? 

The sequential removal of nodes from a network (and the associated 
edges) is called node percolation, where the fraction of nodes not removed 
(!) is called the occupation probability. If ! = 1, then all nodes remain, if
! = 0, then all nodes are removed. 

When the network contains a giant component it is said that it percolates.
A percolation transition occurs when this giant component disintegrates.
The value of ! at which the percolation transition occurs is called the
percolation threshold.
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Approach and Central Question

Approach: Use the configuration model to create random scale-free 
networks and the E-R model to create random networks with binomial
degree distribution (they call these “exponential networks” because the
fraction of nodes with degree d declines approximately exponentially 
when ! ≫ ! ). 

Question: Which type of network is most resilient to node removal?
More precisely, which type has a higher percolation threshold? 



Their Definition of Network Diameter

Shortest path from node 1 to node 6 is (1,5,4,6), path length=3
Do this calculation for all node pairs and sum

Divide by the number of node pairs to get diameter d
(this is the mean geodesic path length of the network)

Only computed for nodes within the giant component



The Scale-Free Network is More Resilient to 
Random Failure Than the Exponential Network
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 d Linear increase in d

Almost no change

Increase in diameter means that the network is becoming disconnected



But the Scale-Free Network is More Vulnerable 
to Attack Than the Exponential Network
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 d Same linear increase in d

Larger linear increase in d

Attack means sequentially taking out the nodes with highest degree



Giant Components 

S = Fraction of nodes in the giant component
<s> =  mean size of an isolated (non-giant) component



In an Exponential Network There is No 
Difference Between Failure and Attack on 

Giant Component Size 

Failure fraction f
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fc is the percolation threshold



In an Exponential Network the Network 
Disintegration is Roughly Homogenous 

Component size
distribution

f=0.05 f=0.18 f=0.45
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In a Scale-Free Network There is a Big 
Difference Between Failure and Attack on 

Giant Component Size 

Failure fraction f
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fc is the percolation threshold

failure
attack

Inset: wider range of f



In a Scale-Free Network the Network 
Disintegration in Response to Failure is Very 

Heterogeneous

Homogenous disintegration

Heterogeneous disintegration



Degree Distribution of the Internet Obeys a 
Power Law for k>1

Pr # = % = &%'(.*+
in the year 2000



In-Degree and Out-Degree Distributions of 
the WWW Obey Power Laws

!"# = 2.1 !()* = 2.45

Exponent data from the year 2000
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The Internet and WWW are Resilient to 
Random Failure, but Sensitive to Attack

Failure fraction f

Internet data: 6,209 nodes and 12,200 edges

WWW data: 325,729 nodes and 1,498,353 edges



In the Internet and WWW There is a Big 
Difference Between Failure and Attack on Giant 

Component Size 

Failure fraction f
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The End


