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References: Chapters 5 and 8 of Mathematical Models in Biology, by

Leah Edelstein-Keshet. Chapter 6 of the Strogatz text.

The FitzHugh-Nagumo Model

This model retains an ODE for voltage and an ODE for a single recovery

variable w, which plays the role of n in the Hodgkin-Huxley model. The

voltage is now really a voltage-like variable, and the model is usually

written in dimensionless form:

dv

dt
= v − v3 − w + Iap (1)

dw

dt
= (v − a− bw)/τw (2)

where a, b, τw and Iap are parameters. The right hand sides of these equa-

tions are both polynomials, which makes them easier to work with than

the exponential functions in the Hodgkin-Huxley model. This model has

only one negative feedback variable (w) rather than the two of Hodgkin-

Huxley, and the positive feedback is direct through the linear term in the

v ODE rather than through a separate variable.

To start a phase plane analysis one first finds the nullclines, where

individual derivatives are zero.

v-nullcline:

w = v − v3 + Iap (3)
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which is a cubic function in v.

w-nullcline:

w = (v − a)/b (4)

which is a linear function in v.

v

w

w−null

v−null

Figure 1: Nullclines of the FitzHugh-Nagumo model.

As we will see, the cubic v-nullcline is an essential feature for an ex-

citable system model. The polynomial right hand sides are convenient

mathematically, but they are a turn off for neuroscientists, who expect to

see ionic currents. In 1981 Morris and Lecar developed a model of the

barnacle muscle fiber that was planar and had ionic currents. This is now

the standard model used by mathematical neuroscientists.

The Morris-Lecar Model

• One hyperpolarizing current: IK = ḡKw(V −VK), where ḡK is maxi-

mum conductance and w is an activation variable, the fraction of open
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K+ channels. w approaches its equilibrium value, w∞(V ), with a rate

of τ−1
w , where τw = τw(V ) is the so-called time constant:

dw

dt
= [w∞(V )− w] /τw(V ) . (5)

• One depolarizing current: ICa = ḡCam∞(V )(V − VCa), which is as-

sumed to activate instantaneously.

• One leakage current: IL = gL(V −VL), which is depolarizing and has

a V -independent conductance.

• One capacitance current: IC = C dV
dt , where C is the membrane ca-

pacitance.

• One applied current: Iap, the current applied through an electrode.

The voltage equation is then

dV

dt
= −(ICa + IK + IL − Iap)/C. (6)

The ODEs for the Morris-Lecar model are then:

dV

dt
= −(ICa + IK + IL − Iap)/C (7)

dw

dt
= [w∞(V )− w] /τw(V ) . (8)

This can be analyzed in the w − V phase plane.
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Figure 2: Calcium and potassium equilibrium and time constant functions

V -nullcline:

w =
Iap − ḡCam∞(V )(V − VCa)− gL(V − VL)

gK(V − VK)
(9)

w-nullcline:

w = w∞(V ) (10)

= 0.5[1 + tanh(
V − V1

s1
)] (11)

=
eu

eu + e−u
(12)

where u = V−V1
s1

with parameters V1 and s1 > 0 that modify the shape of

the function.

The middle branch of the cubic-shaped V -nullcline is the impulse thresh-
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Figure 3: Phase plane analysis of the Morris-Lecar model. Red: subthreshold response, Green:

impulse. Iap = 0.

old. Figure 3 shows the response to a small voltage perturbation from

the resting state. In one case the perturbation is not large enough to

push the system past the spike threshold, so a passive or subthreshold

response occurs (red). In the other case the perturbation is sufficiently

large to activate a regenerative response; the trajectory moves far away

from rest before finally returning. This is an impulse, or action poten-

tial. A cubic-like V nullcline is important for this excitable behavior with

a threshold, and most other planar models for impulse generation have

cubic-like V -nullclines.

Increasing the applied current translates the V -nullcline upward. With

enough current the system starts to spike continuously. That is, periodic

impulses are produced. This is called tonic spiking, and it is often seen
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in neurons when external current is injected, and sometimes even when it’s

not. This is clearly a big change in behavior compared with a single-spike

response. A qualitative change in behavior is called a bifurcation, and this

particular bifurcation is called a Hopf bifurcation. This is probably the

most important type of bifurcation in neuroscience, and we will discuss it

in detail. But first we should set the mathematical foundation.

Linear Stability Analysis

An equilibrium or steady state is considered locally stable if the phase point

returns to the equilibrium if perturbed away by a small amount. This is

regardless of the exact perturbation (i.e., the direction of perturbation in

the phase space), as long as it is not a large perturbation. A good example

is a pendulum, which has a stable steady state in which the bob is straight

down; following a tap it will swing back and forth, but the amplitude of

the swing will decline and eventually it will return to the straight-down

position. Can you think of an example of an unstable equilibrium?

Mathematically, we can determine the stability of an equilibrium by

performing a linear stability analysis. We will go through the steps of

doing this with the Morris-Lecar model, which can be written as:

dV

dt
= F (V,w) (13)

dw

dt
= G(V,w) (14)
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where F (the sum of the currents) and G (the first-order kinetic terms)

can be thought of as velocities. That is, F describes the rate at which V

is changing and G is the rate at which w is changing. Suppose (V ∗, w∗)

is an equilibrium, then F (V ∗, w∗) = 0 and G(V ∗, w∗) = 0 since there is

no motion at equilibrium. In fact, this is how we can find the equilibria,

by setting the velocities to 0!

The velocity functions in the M-L model are nonlinear, which makes it

impossible to solve the differential equations without the aid of a computer.

However, there is a theorem called the Hartman-Grobman Theorem that

says that in the neighborhood of an equilibrium (technically this only

applies to hyperbolic equilibria, but ignore this for now) the flow of the

nonlinear system can be approximated accurately using a linear system.

The good news is that we can solve the linear system by hand! Consider

what happens when you perturb voltage a distance x from its equilibrium

value, and w a distance y from its equilibrium value, so V = V ∗ + x

and w = w∗ + y. Then the subsequent dynamics of x and y can be

approximated by the linearized system, which is

dx

dt
= F ∗v x + F ∗wy (15)

dy

dt
= G∗vx + G∗wy (16)

where the coefficients are partial derivatives of the velocity functions, eval-



9

uated at the equilbrium:

F ∗v =
∂F

∂v
(V ∗, w∗) (17)

F ∗w =
∂F

∂w
(V ∗, w∗) (18)

G∗v =
∂G

∂v
(V ∗, w∗) (19)

G∗w =
∂G

∂w
(V ∗, w∗) . (20)

This comes directly from Taylor’s theorem. The linearized system can be

written in terms of a matrix and vectors:

d~x

dt
= J~x (21)

where

~x =

(
x
y

)
(22)

and J is the 2× 2 Jacobian matrix evaluated at the equilibrium:

J =

(
F ∗v F ∗w
G∗v G∗w

)
. (23)

The solution to this linear matrix differential equation is very similar to

that of a linear scalar differential equation, involving the exponential func-

tion. It is sometimes called the spectral solution,

~x(t) = c1eλ1t~v1 + c2eλ2t~v2 (24)

where c1 and c2 are constants that depend on the initial conditions, λ1 and

λ2 are called eigenvalues and ~v1 and ~v2 are called eigenvectors of matrix
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J. These things are very important in the field of dynamics, but we won’t

go into their mathematical meening except to say that an eigenvector of

a matrix is special in that when it multiplies the matrix the only effect is

to shrink or stretch the vector (and perhaps reverse its orientation). No

other changes in orientation of the vector occur. The amount that the

vector is shrunk/stretched is equal to the corresponding eigenvalue (and

if the vector orientation is reversed then the eigenvalue is negative).

The spectral solution makes it easy to see what happens over time to the

perturbation ~x(t). Suppose that both eigenvalues are negative, then both

components of ~x tend to 0 over time. Since the perturbation therefore

disappears over time, the equilibrium (V ∗, w∗) is stable when λ1 < 0 and

λ2 < 0. Otherwise, (V ∗, w∗) is unstable, and (most) perturbations away

from equilibrium will grow over time.

Tonic Spiking

We have seen that when Iap = 0 a large enough perturbation can pro-

duce a spike, but after that spike the system returns to rest. This is because

the equilibrium is stable. When depolarizing current is added (Iap > 0)

the V -nullcline is shifted upward, so that the location of the equilibrium

gets closer to the lower knee or fold of the V -nullcline. The strength of

attraction of the equilibrium gets weaker as this occurs. With even more

depolarizing current the intersection of the nullclines moves to the middle
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branch of the cubic V -nullcline. At such an intersection the equilibrium

becomes unstable, no longer attracting the phase point. When this hap-

pens the system will spike continuously, which neuroscientists often call

tonic spiking.
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Figure 4: Tonic spiking with the Morris-Lecar model, when Iap = 100 pA.

Mathematically speaking, tonic spiking is an example of a periodic so-

lution to the differential equations. When viewed in the phase plane, as in

Fig. 5, the trajectory of the periodic solution is called a limit cycle. Since

initial conditions that start near the limit cycle are attracted to it, we have

a stable limit cycle. This qualitative change in behavior, from a system at

rest (stable equilibrium) to a system exhibiting tonic spiking (stable limit

cycle) is an example of a bifurcation. There are several types of bifurca-
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Figure 5: Phase plane analysis of the Morris-Lecar model. Green: Limit cycle. Iap = 100 pA.

tion that can occur in dynamical systems, and they play a central role in

understanding how changes in the values of parameters affect the behavior

of the system. The particular bifurcation that we have encountered in the

M-L model is a Hopf bifurcation. This is one way that periodic behavior

can be initiated. You can even determine the value of the parameter Iap

where this bifurcation occurs by looking at the eigenvalues. At a Hopf

bifurcation the eigenvalues are purely imaginary: λ1,2 = ±γi for some

non-zero number γ.

What happens if Iap is increased even more? This continues to move

the V -nullcline upward, shifting the intersection (i.e., the equilibrium)

closer and closer to the right knee or fold. With enough applied current

the equilibrium will be on the right branch and it will regain stability.
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It does this be going through a second Hopf bifurcation. The new stable

equilibrium has a high or depolarized voltage and is very different from the

equilibrium that occurred when the intersection was on the left branch.

This depolarized equilibrium is called depolarization block since when the

voltage is this high it is no longer possible to produce action potentials.
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Figure 6: Depolarized resting state produces depolarization block, when Iap = 250 pA.

Bifurcation Analysis

The dynamics of the Morris-Lecar model as Iap is varied can be summa-

rized with a bifurcation diagram. Such a diagram describes the asymptotic

state of the system over a range of values of a bifurcation parameter, in

this case Iap. Points on the diagram at which the number or nature of

the asymptotic dynamics exhibit qualitative changes (like changes in the

number of equilibria or their stability) are called bifurcations. These are



14

the organizing centers of the system dynamics.
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Figure 7: Stationary bifurcation diagram for the Morris-Lecar model. Dashed portion of curve

represents unstable equilibria. HB=Hopf bifurcation.

Figure 7 shows a stationary bifurcation diagram for the Morris-Lecar

model. This focuses entirely on the equilibria (also called stationary

points). As Iap is increased the equilibrium voltage increases. That is,

the cell’s resting equilibrium depolarizes. At the Hopf bifurcation, labelled

as HB1, the equilibrium becomes unstable, even as it continues to become

more depolarized. There is a second Hopf bifurcation, at HB2, where the

equilibrium regains stability. The stable and very depolarized equilibria

for Iap beyond this are in the depolarization block state.

Where do the tonic spiking solutions fit in? We should expect them to

be present between the Hopf bifurcations, since the equilibrium is unstable

in this interval. But it turns out that the tonic spiking solutions exist even
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Figure 8: Bifurcation diagram for the Morris-Lecar model, showing asymptotic stationary and tonic

spiking solutions (minumum and maximum voltage are shown). HB=Hopf bifurcation.

beyond the Hopf bifurcations, i.e., to the left of HB1 and to the right of

HB2. Since a periodic solution is not just a point, as equilibria are, it’s not

obvious how to represent a branch of periodic solutions. One approach,

which we will use, is to plot the minimum and the maximum value of V

during the oscillation. Thus, for each Iap where periodic solutions exist,

we’ll plot two points. If we connect all the minimum points and all the

maximum points we get two curves, as in Fig 8. You can see from this that

the spike amplitude, the distance between the two tonic spiking branches,

does not change much when Iap is varied. This reflects the typical all-or-

none behavior of action potentials.

What happens in the overlap interval? For each Iap in this interval

there is a stable rest state and a stable tonic spiking state. How does the
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Figure 9: Phase portrait of the Morris-Lecar model for Iap in the overlap interval, where the system

is bistable. The dashed brown curve, an unstable limit cycle, is the separatrix.

cell know which one to get attracted to? There must be something that

separates them. In fact there is, and it’s called the separatrix. This is best

visualized in the phase plane. In Fig. 9 we see the phase portrait for a

value of Iap in the overlap region. Both the stable equilibrium (red point)

and the stable periodic solution or limit cycle (red curve) are present, and

there is a circular dashed curve that lies between. This is the separatrix.

But what is it? It’s actually another limit cycle, but it’s unstable! If the

system starts on this curve, then it stays on it. But if it starts inside the

separatrix the phase point is attracted to the equilibrium. We say that the

basin of attraction of the equilibrium is the region inside the separatrix.

If the initial conditions are outside of the separatrix, then the phase point

is attracted to the stable limit cycle. The basin of attraction of the stable



17

limit cycle is thus all the points in the phase plane that lie outside of the

separatrix.

This is an example of a bistable system, where two stable structures

co-exist for the same value of the parameters. Such systems are important

to recognize, since the state that a bistable system is in depends on it’s

starting state. In a neuron, this means that you may record a silent cell,

and then come back later and the cell is tonically spiking. This transition

could be the result of noise in the system that pushes the cell from the

basin of attraction of the rest state across the separatrix and into the basin

of attraction of the tonic spiking state. Later on, noise could push it back

into the basin of attraction of the rest state and the cell can be silent

again!

For each Iap in the overlap region of the bifurcation diagram there is

an unstable limit cycle. We can plot the minimum and maximum values

of these limit cycles and we’ll get two curves in the bifurcation diagram.

They should both be dashed to reflect the fact that the limit cycles are

unstable. It turns out that the same behavior occurs in the vicinity of

the second Hopf bifurcation. When we put it all together we get the

complete bifurcation diagram of the Morris-Lecar model, treating Iap as

the bifurcation parameter (Fig. 10).

A Hopf bifurcation can be thought of as one of the ways in which peri-
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Figure 10: Complete Morris-Lecar bifurcation diagram. Black: stationary branch, Red: periodic

branch. Dashed=unstable. SNP=saddle-node of periodics bifurcation, HB=Hopf bifurcation.

odic solutions are born. In this case, the periodics are born unstable, and

the periodic branch emerging from the HB bends backwards. When this

happens the bifurcation is called a subcritical Hopf bifurcation, abbrevi-

ated as subHB. So both HB1 and HB2 in Fig. 10 are subHB’s.

There is another type of bifurcation shown in the figure. This occurs

when the branch of unstable periodic solutions coalesces with the branch of

stable periodic solution. It is called a saddle-node of periodics bifurcation,

abbreviated as SNP. There are two of these in Fig. 10; it is very common

for an SNP bifurcation to be present when there is a subHB bifurcation.

Looking in the phase plane at a value of Iap near the SNP bifurcation,

what we see is that the two limit cycles are very close together (Fig. 11).

The unstable one is on the inside, surrounded by the stable one. When
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they coalesce, at the value of Iap corresponding to the SNP, the resulting

structure is half-stable. It attracts from the outside and repels from the

inside. For Iap beyond the SNP the whole structure disappears; the SNP

is the death of the limit cycles (or the birth, if you come from the other

direction).
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Figure 11: Near an SNP bifurcation the stable and unstable limit cycles are very close together. At

the SNP they coalesce, creating a half-stable limit cycle that attracts from the outside and repels

from the inside.

One can also view the period vs. parameter, as in Fig. 12. This is an

example of a Type 2 Oscillator, since the period is bounded. For a Type

1 Oscillator the period is unbounded as Iap approaches a critical value

(Fig. 13), called a homoclinic bifurcation.

At a homoclinic bifurcation, the time required for the trajectory to go

all the way around the limit cycle is infinite. This strange limit cycle is
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Figure 12: Periodic bifurcation diagram for a type II oscillator. The period of the stable oscillatory

solution remains bounded.
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Figure 13: Periodic bifurcation diagram for a type 1 oscillator. The period approaches infinity at

the homoclinic bifurcation (HM).
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called a homoclinic orbit. The reason it takes so long to traverse the homo-

clinic orbit is because it actually contains an equlibrium point. This is an

equilibrium point, called a saddle point, that attracts from one direction

and repels from the other. There is a curve that contains the saddle point

on which all trajectories are attracted to the saddle point as t→∞. This

is called the stable manifold of the saddle point. It actually consists of

two branches, one branch that comes into the saddle point in one direction

and another branch that comes in at a direction 180o opposite. There is

also a curve, again with two branches, on which all trajectories are at-

tracted to the saddle point in reverse time, that is, as t → −∞. This is

called the unstable manifold. A homoclinic orbit occurs when one branch

of the stable manifold connects with a branch of the unstable manifold.

From the diagram in Fig. 14 we can see immediately why the period of

the homoclinic orbit is infinite (right?).
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Figure 14: Homoclinic orbit in the phase plane. (green) stable manifold, (brown) unstable manifold

of the saddle point (triangle). The homoclinic orbit surrounds an unstable equilibrium (open circle).

Some neurons exhibit type 1 dynamics, so the firing rate declines to

near 0 as the applied current is decreased. Other neurons exhibit type 2

dynamics, so the system makes an abrupt transition from continuous spik-

ing to rest as the applied current is decreased. Knowing which behavior

occurs allows one to develop an appropriate model for the neuron.
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Integrate-and-Fire Models

The Morris-Lecar model is a simplification of the Hodgkin-Huxley model,

reducing the dimension from 4 to 2. One can further reduce the dimension-

ality to 1 by using an integrate-and-fire model. The principle behind

this is simple: An action potential is an all-or-none event (approximately)

in which a spike occurs if a threshold (Vth) is reached.

Figure 15: Spike threshold distinguishes sub-threshold from super-threshold responses.

In models discussed so far, this threshold behavior is part of the nonlinear

dynamics of the equations. In integrate-and-fire models the equations

themselves are linear (and thus easily solved), but when V > Vth a spike

is recorded and the voltage is reset to a value (Vres) that would occur after

the spike is over. The spike itself is not produced by the single differential

equation for the voltage.

In this simplest integrate-and-fire model the conductances are constant,
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Figure 16: Illustration of time dynamics of an integrate-and-fire model.

so dynamics are linear between spikes. This is often called a passive or

leaky integrate-and-fire model. The voltage equation is

τV
dV

dt
= Vl − V + Iap (25)

where τV is the membrane time constant, which would be C
gtot

in biophysical

models (where gtot is the total conductance).

The model also contains a conditional statement, which introduces the

nonlinearity:

“If V ≥ Vth then a spike is implied, so (1) record the spike time, and (2)

reset V to Vres.”

The time required to reach the threshold can be adjusted by varying

Vth or Vres. Also, τV determines the rate at which V rises. If Iap is kept

constant, then the V ODE is linear with constant forcing, so it can be
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solved:

V (t) = Vl + Iap + [V (0)− Vl − Iap]e−t/τV (26)

or

V (t) = V∞ + [V (0)− V∞]e−t/τV (27)

where V∞ ≡ Vl + Iap. If the applied current is sufficiently large, then

the model neuron will produce a periodic train of impulses. Because the

system is piecewise linear one can derive an expression for the period of

spiking, called the interspike interval. Suppose that at t = 0 the neuron

has just fired an impulse, so that V (0) = Vres. The next impulse will

occur when V reaches the threshold, at time tISI :

Vth = V∞ + (Vres − V∞)e−tISI/τV (28)

solving, solving,

tISI = τV ln

(
V∞ − Vres
V∞ − Vth

)
. (29)

We can derive a simpler expression for this by making use of approxima-

tions. Suppose that Iap is large, then V∞ is large and we can write

V∞ − Vres
V∞ − Vth

= 1 + z (30)

where z is a small number. Thus,

z =
V∞ − Vres
V∞ − Vth

− V∞ − Vth
V∞ − Vth

(31)
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or

z =
Vth − Vres
V∞ − Vth

. (32)

Since tISI = τV ln(1 + z) where z is small we can use a linear Taylor

approximation, centered at z = 0, ln(1 + z) ≈ z, so

tISI ≈ τV z = τV

(
Vth − Vres
V∞ − Vth

)
(33)

when V∞ (and Iap) is large.

The firing rate r is r = 1
tISI

, so for large Iap,

r ≈ V∞ − Vth
τV (Vth − Vres)

=
Vl + Iap − Vth
τV (Vth − Vres)

. (34)

It is clear from Eq. 34 that the firing rate increases linearly with Iap

(when Iap is large). This behavior is observed in some neurons. However,

many neurons exhibit spike-frequency adaptation under current injection.

That is, the spiking starts out fast and then slows down. To simulate this,

we can add another current to the V ODE,

τV
dV

dt
= Vl − V − ga(V − VK) + Iap (35)

where ga(V −VK) is an adapting current. We assume that ga is increased

by ∆ga with each spike and between spikes it relaxes to 0 exponentially

with time constant τa,

ga = ga + ∆ga at a spike (36)
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and

τa
dga
dt

= −ga between spikes. (37)

During repetitive firing ga builds up. Since ga(V −VK) is a hyperpolar-

izing current, the effect of the buildup in ga is to slow down the approach

to spike threshold, and thus to reduce the firing rate. This yields a spike

train that starts out fast and then slows down.
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V (mV)

Vres

Vth

t (ms)

g a

ag∆

Figure 17: Time dynamics of an integrate-and-fire model with adaptation.

Other variations to the leaky integrate-and-fire model can be made,

reflecting properties of the neuron under investigation.


