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A bifurcation is a qualitative change in the asymptotic

structure of a dynamical system. Stationary bifurcations in-

volve changes in the number and/or stability of steady states.

Periodic bifurcations involve changes in the number and/or

stability of periodic solutions. All of these bifurcations can

occur in continuous dynamical systems of two dimensions or

higher, but for simplicity we will discuss planar systems (the

generalization to higher dimensions is straight forward). Con-

sider a typical nonlinear planar system

d~x

dt
= ~F (~x;µ) (1)

where ~x is a 2-dimensional vector, µ is a parameter, and ~F :

R2 → R2 is a nonlinear function. The roots of ~F are the steady

states and their stability can be determined by linearizing the

system about these points. Let ~p be a steady state of the

planar system, then the linearization about ~p is

d~x

dt
= J~x (2)

where J is the 2× 2 Jacobian matrix evaluated at ~p.
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Stationary bifurcations

A steady state ~p is a node if the two eigenvalues λ1 and

λ2 of J are real and have the same sign. If the eignenvalues

are negative, then ~p is stable; otherwise it is unstable. The

steady state is a saddle point if the eigenvalues are real with

opposite signs. If the eigenvalues form a complex conjugate

pair, then ~p is a focus (also called a spiral). If both eigen-

values of ~p have non-zero real parts, then the steady state is

hyperbolic. This is the typical case, and by the Hartman-

Grobman theorem the linearization is a good description of

the flow in the neighborhood of a hyperbolic steady state. If,

in contrast, ~p has an eigenvalue with zero real part it is called

non-hyperbolic and the flow of the linearlized system may

not be a good description of the flow of the nonlinear system

near ~p. Suppose that Eq. 1 has a non-hyperbolic equilibrium

when parameter µ = µc. Then there is a bifurcation at this

value of the parameter. Bifurcations occur at non-hyperbolic

steady states.

At a stationary bifurcation one of the eigenvalues is zero. At
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a saddle-node bifurcation a saddle point and a node coalesce,

creating a single steady state with a zero eigenvalue. For µ on

one side of this bifurcation there are no steady states; for µ on

the other side there are two steady states.
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Figure 1: Saddle node bifurcation at µ = µc. Solid=stable, dashed=unstable.
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Figure 2: Pitchfork bifurcation at µ = µc. Solid=stable, dashed=unstable.

A pitchfork bifurcation can occur in symmetric systems.

The number of equilibria goes from 1 to 3 as this bifurcation
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is crossed and the stability of the original equilibrium changes.

At a transcritical bifurcation the stability is transferred from

one equilibrium point to another. There are two equilibria for

µ on either side of µc, and one equilibrium when µ = µc. The

stable equilibrium for µ < µc becomes unstable for µ > µc

and vice versa.
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Figure 3: Transcritical bifurcation at µ = µc. Solid=stable, dashed=unstable.

Periodic bifurcations

A bifurcation involving the change in the number or stability

of a periodic solution, or limit cycle, is a periodic bifurcation.

A Hopf bifurcation is a periodic bifurcation in which a new

limit cycle is born from a stationary solution. The stationary

solution changes stability as the limit cycle is born. This oc-
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curs when the eigenvalues of the stationary solution cross the

imaginary axis. Suppose that ~p is a steady state and the eigen-

values of the linearization are purely imaginary when µ = µc,

but for some neighborhood to the left of µc and some neigh-

borhood to the right of µc the eigenvalues are complex with

non-zero real part. Then there is a Hopf bifurcation at µ = µc.
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Figure 4: The eigenvalues cross through the imaginary axis at a Hopf bifurcation.

The red points indicate the Hopf bifurcation.

According to the Hopf Bifurcation Theorem, the following

things are true at a Hopf bifurcation:

• The limit cycle born at the bifurcation has 0 amplitude.

As µ is moved away from µc the amplitude A grows as

A ∝
√
|µ− µc| for µ in some neighborhood of µc.
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• The period T of the limit cycle born at the bifurcation is

T = 2π
Im(λ).
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Figure 5: The new limit cycle (red) and the steady state (black) have opposite

stability properties.

At a supercritical Hopf bifurcation the limit cycle that is

born is stable. At a subcritical Hopf bifurcation the limit cycle

is born unstable. In the associated bifurcation diagrams the

periodic branch that emerges from the stationary branch at the

bifurcation is stable (supercritical) or unstable (subcritical).

Another type of periodic bifurcation is a saddle-node of

periodics (SNP) bifurcation. This occurs when a stable limit

cycle coalesces with an unstable limit cycle, creating a limit

cycle that attracts from one direction and repels from another

(it might attract phase points inside the cycle and repel those
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Figure 6: Typical bifurcation diagram near a supercritical Hopf bifurcation.

Black=stationary branch, Red=min and max of stable periodic branch.
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Figure 7: Typical bifurcation diagram near a subcritical Hopf bifurcation.

Black=stationary branch, Red=min and max of unstable periodic branch.
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outside, or vice versa). As the parameter µ is moved past the

bifurcation point µc the limit cycle disappears.
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Figure 8: Two limit cycles near a saddle-node of periodics (SNP) bifurcation.
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Figure 9: At an (SNP) bifurcation two periodic branches, one stable and the other

unstable, join together at a turning point. In the diagram there appears to be two

turning points, but there is only one since the upper curve represents the maximum

of the limit cycles and the lower curve represents the minimum.

In terms of the bifurcation diagram, a periodic branch has

a turning point at an SNP bifurcation. One incoming periodic
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branch is stable, while the other is unstable.

There are several other types of periodic bifurcations, but

we will only discuss a homoclinic bifurcation. This bifurcation

terminates a periodic solution branch and the oscillation period

approaches infinity as the bifurcation is approached (i.e., as

µ → µc). Beyond the bifurcation point the limit cycle no

longer exists. We will discuss this more in the next chapter.

Both the SNP and homoclinic bifurcations are known as

global bifurcations, since they cannot be studied through a

local analysis of a steady state (as is done with the local bi-

furcations such as the Hopf or the stationary bifurcations).

To study their stability one must form Poincaré sections and

examine the eigenvalues of the linearization of the Poincaré

map. These are called Floquet multipliers. An SNP bifurca-

tion occurs when of these multipliers crosses through the unit

complex circle at 1.


