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a b s t r a c t 

Insulin-secreting pancreatic β-cells are electrically excitable cells that are unusual because their electrical 

activity is influenced directly by metabolism via ATP-sensitive K 

+ channels. At the same time, changes in 

the intracellular Ca 2+ concentration that result from the cell’s electrical activity influence metabolism in 

several ways. Thus, there is bidirectional coupling between the electrical dynamics and the metabolic 

dynamics in β-cells. A mathematical model has been previously developed, called the Integrated. 
Oscillator Model (IOM), to highlight the bidirectional coupling involved in the oscillation mechanism. In 

this study, we show how this coupling can produce oscillations in β-cell activity. These oscillations have 

period similar to that of insulin secretion pulses observed in rats, mice, dogs, and humans, which has 

been shown to facilitate the action of the liver in maintaining glucose homeostasis. In a companion pa- 

per we show that the IOM can produce oscillations using two distinct mechanisms, depending on the 

values of electrical and metabolic parameters. In the present article, we use fast-slow analysis to under- 

stand the mechanisms underlying each of these oscillations. In particular, we show why a key variable 

in the glycolytic pathway generates a pulsatile time course in one type of oscillation, while it generates 

a sawtooth time course in the other type. The significance of these patterns is that the time course is 

a reflection of whether an intrinsic glycolytic oscillator is active, or whether the oscillations are a direct 

consequence of Ca 2+ feedback onto glycolysis. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Clusters of endocrine cells in the pancreas, called islets of

Langerhans, manage elevations in the blood glucose level such as

after meals by secreting insulin into the blood stream, which en-

ables tissue throughout the body to absorb glucose. Insulin is re-

leased from islet β-cells in pulses governed by periodic Ca 2+ en-

try to the cytoplasm, caused by bursting electrical activity in the

plasma membrane ( Nunemaker and Satin, 2014 ). Pulsatile insulin

secretion enhances the efficacy of the liver in glucose homeosta-

sis ( Bratusch-Marrain et al., 1986; Komjati et al., 1986; Matveyenko

et al., 2012 ), and insulin pulsatility is impaired in patients with

type 2 diabetes ( Lillioja et al., 1993; O’Rahilly et al., 1988; Polonsky

et al., 1988 ). 

Despite a long history of β-cell modeling Sherman (2010) , the

interactions of intracellular pathways that maintain pulsatile in-

sulin release are not fully understood. This is partly due to the

challenge of synthesizing a coherent mechanism that includes
∗ Corresponding author. 

E-mail address: bertram@math.fsu.edu (R. Bertram). 
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he key features of glucose metabolism to adenosine triphos-

hate (ATP), membrane electrical activity, and the feedback of in-

racellular Ca 2+ onto both. Unlike most electrially excitable cells,

etabolism affects the cell’s electrial activity via ATP-sensitve K 

+ 

hannels, which are inactivated by the nucleotide. Understanding

hythmogenesis in β-cells is also hindered by a lack of probes

hat can simultaneously monitor variables with high temporal

esolution, particularly variables in glycolysis, the first phase of

etabolism. In a recent article Merrins et al. (2016) , we presented

ighly time-resolved records from glucose-stimulated β-cells of

lycolytic metabolite (FBP: fructose 1,6-bisphosphate) levels, us-

ng a Förster resonance energy transfer (FRET) sensor attached to

he enzyme pyruvate kinase (called PKAR) ( Merrins et al., 2013 ),

imultaneously with membrane potential ( V ) or the intracellular

a 2+ concentration. That study demonstrated that there are oscilla-

ions in glycolysis, as predicted by a mathematical model Bertram

t al. (20 04, 20 07) , but the sawtooth shape of the FBP oscillations

as not as expected. This disconnect between model and data

as resolved by including a known, but previously unincorporated,

a 2+ feedback at a key step of glucose metabolism Denton (2009) ,

ramatically altering the FBP time course from pulsatile to the

https://doi.org/10.1016/j.jtbi.2018.08.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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awtooth pattern observed experimentally ( McKenna et al., 2016;

errins et al., 2016 ). However, this change also brought about

 transformation of the elements underlying rhythm generation,

rompting a renaming of the modified model to the Integrated Os-

illator Model (IOM) ( Bertram et al., 2018 ). Understanding the dy-

amics underlying these oscillations is the goal of this article. 

In a companion article Marinelli et al. (2018) we show that the

OM is capable of generating slow bursting electrical oscillations

hrough two mechanisms that are indistinguishable if one only

onitors the cell’s electrical activity or intracellular Ca 2+ level.

owever, the time course of the glycolytic variable FBP is pulsatile

n one case and sawtooth in the other. The former reflects an in-

rinsic oscillation in the glycolytic subsystem, driven by positive

eedback of FBP onto the enzyme that makes it, phosphofructoki-

ase (PFK). This was described in Smolen (1995) , which developed

he model used for the glycolytic subsystem of the IOM. In con-

rast, the basis for the oscillations exhibiting a sawtooth FBP pat-

ern remains unclear. As we show in Marinelli et al. (2018) , in this

ituation the intrinsic glycolytic oscillator is not active. But then

hat drives the oscillations? This is important to know, since PKAR

easurements reported thus far reflecting FBP levels have shown

 sawtooth pattern. To answer this question we apply a fast-slow

nalysis Bertram and Rubin (2017) to a reduced version of the IOM,

nd then to the full IOM. We demonstrate how the Ca 2+ feedback

nto glycolysis drives the FBP time course. This is in contrast to the

ase of intrinsic glycolytic oscillations, where the regenerative PFK

nzyme activity drives the FBP time course. The fast-slow analy-

is done here complements the analysis in the companion paper

arinelli et al. (2018) on the transitions between the two bursting

echanisms. It is also a mathematical realization of the mecha-

ism described verbally and pictorially in Bertram et al. (2018) . 

. The Integrated Oscillator Model 

The IOM constists of two modules, one for ATP produc-

ion and the other for cellular electrical activity and calcium

andling. Both are described in detail in the companion paper

arinelli et al. (2018) and are similar to the model used in an

arlier study Bertram et al. (2004) , except that in the current

odel there is Ca 2+ feedback onto glycolysis. The full equations

nd parameters are given in the Appendix, with a more com-

lete description given in the companion paper. The Appendix also

ontains a time scale analysis of the model variables. Computer

odes are available for free download from http://www.math.fsu.

du/ ∼bertram/software/islet . 

.1. Electrical activity and calcium handling 

The electrical activity module of the IOM has a Hodgkin and

uxley (1952) formulation and is coupled to equations for the nu-

leotides adenosine diphosphate (ADP) and ATP, and to the intra-

ellular Ca 2+ concentration. It includes voltage-sensitive Ca 2+ ( I Ca )

nd K 

+ ( I K ), Ca 2+ -sensitive K 

+ ( I K(Ca) ), and ATP-sensitive K 

+ ( I K(ATP) )

onic currents. The cell’s membrane potential ( V ) is described by:

dV 

dt 
= −1 

C 

[
I Ca + I K + I K(Ca) + I K(ATP) 

]
, (1) 

here C is the membrane capacitance. Inward I Ca and out-

ard I K are sufficient to generate continuous spiking whereas

utward I K(Ca) and I K(ATP) act to restore electrical quies-

ence Bertram et al. (2004) . 

The cytoplasmic Ca 2+ concentration, c , is determined by Ca 2+ 

ux across the plasma ( J mem 

) and the endoplasmic reticulum ( J er )

embranes: 

dc = f Ca ( J mem 

− J er ) , (2) 

dt 
here f Ca is the fraction of Ca 2+ ions not bound to buffers. The

quations for the Ca 2+ concentration in the endoplasmic reticulum

 c er ) is: 

dc er 

dt 
= f Ca σer J er , (3) 

here σ er is the ratio of cytosolic volume to ER volume. The

a 2+ pumps in the ER membrane utilize energy from ATP to

aintain the concentraion of Ca 2+ in the ER at a much higher

alue than that in the cytosol. We assume that the mitochondrial

a 2+ concentration, c m 

, is at equilibrium with the free cytoplasmic

a 2+ concentration, c , with proportionality constant k Ca = c m 

/c ≈ 5

uided by Wiederkehr et al. (2011) , thus c m 

= 5 c. 

The Ca 2+ flux terms are: 

 mem 

= −
[

α

V cyt 
I Ca + k PMCA c 

]
(4) 

 er = k SERCA c − p leak (c er − c) . (5) 

arameter V cyt is the volume of the cytosolic compartment and α
onverts current to ion flux. The k parameters reflect the strength

f Ca 2+ pumps, while p leak reflects the leak of Ca 2+ across the ER

embrane. Expressions for the ionic currents, including differential

quations for activation variables, and parameter values are given

n the Appendix and in Marinelli et al. (2018) . This module has four

ifferential equations. 

.2. Metabolism 

The metabolism of glucose to ATP is very complex, and our

odel only contains the few necessary elements to produce

scillations in glycolysis and their downstream effect on ATP

roduction. We use equations for glycolysis that are adapted

rom Smolen (1995) and qualitatively similar to Westermark and

ansner (2003) . The key reaction, which is responsible for os-

illations, is catalyzed by the allosteric enzyme phosphofructok-

nase (PFK). This reaction is the basis of rhythmogenesis in the

lycolytic substem, as we illustrate later. Influx to glycolysis is

hrough glucokinase (GK), which phosphorylates glucose to glu-

ose 6-phosphate (G6P). Efflux from glycolysis is through the mi-

ochondrial pyruvate dehydrogenase (PDH) complex, which decar-

oxylates the final glycolytic product pyruvate to supply acetyl

oA to the citric acid cycle, the next set of reactions in glucose

etabolism. The glycolysis subsystem consists of two differential

quations for the rates of concentration change of the PFK reac-

ion substrate, fructose 6-phosphate (F6P), and product, fructose

,6-bisphosphate (FBP): 

d F6P 

dt 
= 0 . 3(J GK − J PFK ) (6) 

d FBP 

dt 
= J PFK − 1 

2 
J PDH , (7) 

here the 0.3 factor is the assumed ratio of F6P to G6P in the cell

see Bertram et al. (2004) ). 

The glucokinase flux J GK = 0 . 001 μM/ms is held constant to sim-

late perfusion of islets in constant stimulatory glucose. The PFK

ux, J PFK , is increased by its product FBP, creating positive feedback

nto the enzyme catalysis. FBP is further metabolized by a chain of

nzymatic reactions, assumed to be at quasi-equilibrium and rep-

esented through the flux term J PDH (see McKenna et al. (2016) for

etails). Pyruvate dehydrogenase and several other dehydrogenases

nvolved in the citric acid cycle are regulated by changes in the mi-

ochodrial Ca 2+ concentration, c m 

Denton (2009) . The PDH flux is

escribed by: 

 PDH = V PDH 

√ 

FBP , (8) 

http://www.math.fsu.edu/~bertram/software/islet
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Fig. 1. Slow electrical bursting and Ca 2+ oscillations can be produced through two 

very different mechanisms in the IOM. (A) Oscillations produced through the first 

mechanism are a result of oscillations in the glycolytic subsystem and exhibit pulses 

of FBP with a sawtooth F6P pattern. In this panel k Ca 
PDH = 0 so that the Ca 2+ binding 

site on the PDH enzyme is saturated by Ca 2+ ( Eq. 9 ). (B) Oscillations produced by 

the second mechanism result in a sawtooth FBP pattern and no discernable F6P 

oscillations. In this panel mitochondrial Ca 2+ feedback onto glycolysis is introduced 

by setting k Ca 
PDH = 1 μM so that the Ca 2+ binding site on PDH is not saturated. 

Fig. 2. One mechanism for slow oscillations in the IOM can be understood through 

an analysis of the glycolytic subsystem Eqs. 6 and (7) , setting s = 1 and ATP = 

20 0 0 μM. (A) In the (FBP,F6P) phase plane, the limit cycle orbit moves along the 

outer branches ( N −) of the FBP nullcline with fast transitions (double arrow) be- 

tween them. The F6P nullcline ( M ) intersects the FBP nullcline on its middle branch 

( N + ) at an unstable equilibrium. (B) F6P is the slow variable of the glycolytic sub- 

system, tracing out a sawtooth pattern. (C) FBP is the fast variable, with a square- 

wave or pulsatile timecourse. 
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where V PDH = v PDH s and s is a Ca 2+ -dependent factor. We use

V PDH as a bifurcation parameter of the glycolytic subsystem in

Figs. 3 and 4 . 

For most of the study we assume that the PDH flux rate re-

sponds instantaneously to c m 

: 

s = s ∞ 

(c m 

) = 

c m 

c m 

+ k Ca 
PDH 

= 

c 

c + k Ca 
PDH 

/ 5 

(9)

with various values of the Ca 2+ dissociation constant k Ca 
PDH 

. We

later study the effects of non-instantaneous Ca 2+ feedback, so the

Ca 2+ regulation of PDH is then modeled with a differential equa-

tion that describes first-order kinetics, with approach to equilib-

rium s ∞ 

with time constant τ s : 

ds 

dt 
= 

s ∞ 

− s 

τs 
. (10)

We use a phenomenological model for ADP and ATP, developed

by Keizer and Magnus (1989) and used in Bertram et al. (2004) .

ATP production is driven by PDH flux and comes at the expense of

ADP. The ADP concentration is given by: 

d ADP 

dt 
= 

{
ATP − exp 

[(
1 + 2 . 2 

J PDH 

0 . 05+ J PDH 

)(
1 − c 

0 . 35 

)]
ADP 

}
τa 

. (11)

The dependence on the cytosolic Ca 2+ concentration reflects the

effect of Ca 2+ flux across the mitochondrial inner membrane on

the mitochondrial membrane potential Keizer and Magnus (1989) .

It is assumed that the sum of the cytosolic nucleotides is con-

served, and that AMP = ADP 2 / ATP Smolen (1995) , so 

ATP = 

1 

2 

[ 
A tot + 

√ 

−4 ADP 

2 + (A tot − ADP ) 2 − ADP 

] 
. (12)

where A tot is the total nucleotide concentration. We plot ATP rather

than ADP since this nucleotide is more readily measured exper-

imentally. There are three or four differential equations in the

metabolic module, and all functional expressions and parameter

values can be found in the Appendix and in the companion paper

Marinelli et al. (2018) . 

3. Results 

3.1. Ca 2+ regulation of pyruvate dehydrogenase reshapes glycolytic 

oscillations 

The IOM is based on the earlier Dual Oscillator Model, named to

highlight the co-existence of oscillation mechanisms driven purely

by the electrical/calcium module and those driven almost entirely

by the metabolic module Bertram et al. (2007) . The latter reflect

the regenerative nature of fructose 1,6-bisphosphate (FBP) pro-

duction by the allosteric enzyme phosphofructokinase (PFK), en-

dowing the glycolytic subsystem Eqs. 6 and (7) with the capac-

ity to oscillate. These oscillations, when they occur, drive oscilla-

tions in adenosine diphosphate (ADP) and adenosine triphosphate

(ATP), which drive bursting oscillations in the cell’s electrical activ-

ity through ATP-inactivated K(ATP) ion channels. The result, shown

in Fig. 1 A, is that the PFK substrate, fructose 6-phosphate (F6P),

oscillates with a sawtooth pattern; the PFK product FBP oscillates

with a pulsatile pattern; there is a burst of electrical impulses

during each FBP pulse (drvien by an ATP pulse, not shown); and

the electrical bursts bring Ca 2+ into the cell resulting in c pulses.

This scenario requires no Ca 2+ feedback onto glycolysis, and in

fact in Fig. 1 A the Ca 2+ feedback onto the pyruvate dehydrogenase

(PDH) reaction is eliminated by setting the dissociation constant in

Eq. (9) to zero, k Ca 
PDH 

= 0 . 

The mechanism for the glycolytic oscillations is illustrated in

the (FBP,F6P) phase plane in Fig. 2 A, which uses the glycolytic
ubsystem Eqs. 6 and (7) in isolation. The FBP nullcline, satisfy-

ng d FBP 
dt 

= 0 , has a cubic shape, with left and right branches de-

oted as N 

− and middle branch denoted as N 

+ . The F6P nullcline,
d F6P 

dt 
= 0 and labeled M , is nearly linear in the region of inter-

st and intersects the FBP nullcline on N 

+ , resulting in an un-

table equilibrium. A stable limit cycle is produced, whose orbit

oves along the two branches of N 

− except for nearly-horizontal

ast transitions, tracing out a relaxation oscillation Bertram and Ru-

in (2017) . In this two-timescale system, F6P is the slow variable

nd FBP is the fast variable (as shown in a time scale analysis in

ppendix). As a result, the F6P timecourse has a sawtooth shape

 Fig. 2 B) while the FBP timecourse has more of a square-wave or
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Fig. 3. Analysis of the isolated glycolytic subsystem, ( Eqs. 6 and 7 ). (A) Bifurcation 

diagram with bifurcation parameter V PDH and constant ATP = 20 0 0 μM. The limit 

cycle attractor depicted in Fig. 2 A disappears by a fold-of-limit-cycles bifurcation at 

V PDH = V FLC 
PDH where it coalesces with a limit cycle repeller that emerges at a sub- 

critical Hopf bifurcation when V PDH = V HB 
PDH . (B) The (FBP, F6P) phase plane has a 

globally attracting limit cycle for V PDH > V HB 
PDH , a globally attracting equilibrium for 

V PDH < V FLC 
PDH , and is bistable for V FLC 

PDH < V PDH < V HB 
PDH . 
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Fig. 4. Ca 2+ regulation of PDH reshapes glycolytic oscillations. (A) A two-parameter 

( V PDH and ATP) bifurcation diagram of the glycolytic subsystem, with slow burst- 

ing trajectories of the full IOM superimposed. c m oscillations generated by the IOM 

(top left) feed back onto glycolysis through the Michaelis-Menten factor s = s ∞ (c m ) 

( Eq. 9 ) (top right) of the PDH flux function ( Eq. 8 ). The glycolytic oscillator is acti- 

vated in region P, where it produces periodic oscillations. It is inactivated in region 

S, where it has a stable steady state. In region B it is bistable, with both stationary 

and periodic solutions. In case 1, the IOM projection lies entirely in region P, while 

in case 3 it lies entirely in region S, and in case 2 it lies in region B. (B) As k Ca 
PDH 

is increased, i.e., PDH affinity for Ca 2+ is decreased, the IOM trajectories move from 

P (A1) through B (A2) to S (A3), resulting in pulsatile (B1), mixed-mode (B2), and 

sawtooth (B3) FBP oscillations. (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.). 
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v  
ulsatile shape ( Fig. 2 C). This mechanism for rhythmogenesis car-

ies through in the full IOM model, with the F6P and FBP time-

ourses showing the same patterns as in the isolated glycolytic

ubsystem. 

Slow bursting oscillations can be produced in a very differenet

ay, as illustrated in Fig. 1 B. In this case, the electrical bursts and

a 2+ pulses look just as they did in the first case. However, now

he F6P oscillations are tiny, and not visible in the figure, while the

BP time course has a sawtooth pattern. The mechanism driving

hese oscillations is fundamentally different from that above, and

n particular is not based on regenerative FBP production through

he PFK enzyme. The switch from one mechanism to the next was

chieved through a change in a single parameter: the dissociation

onstant k Ca 
PDH 

was changed from 0 to 1 μM. This has the effect of

ntroducing Ca 2+ feedback onto glycolysis via the activating action

f mitochondrial Ca 2+ onto the PDH reaction ( Eq. 9 ). Understand-

ng the mechanisms for this transition and the sawtooth FBP oscil-

ations are the goals of this paper. 

.2. Analysis of the glycolytic subsystem reveals the influence of 

eedback on rhythmogenesis 

The glycolytic subsystem is a conditional oscillator. The activa-

ion state of the oscillator is determined by the values of two in-

uts to the subsystem, the PDH flux rate V PDH and the ATP concen-

ration. Fig. 1 demonstrated that introducing Ca 2+ feedback onto

lycolysis can terminate intrinsic glycolytic oscillations in the full

odel through its effect on V PDH . In this section, we explore the

ffects of input to the glycolytic subsystem in isolation Eqs. 6 and

7) , by systematically investigating the influence of both V PDH and

TP on the state of the conditional oscillator. We then examine the

alues of V PDH and ATP produced in the full model during slow

ursting, using what we learned from the isolated glycolytic sub-
ystem to interpret the metabolic oscillations produced by the full

odel. 

We begin by fixing ATP at 20 0 0 μM and doing a bifurcation

nalysis of Eqs. 6 and 7 with bifurcation parameter V PDH . As V PDH 

s lowered from its maximum value v PDH , the equilibrium gains

tability at a subcritical Hopf bifurcation ( V PDH = V HB 
PDH in Fig. 3 A)

nd gives rise to an unstable limit cycle that coalesces with and

nnihilates a stable limit cycle at a fold-of-limit-cycles bifurca-

ion ( V PDH = V FLC 
PDH 

in Fig. 3 A). For V PDH ∈ [ V FLC 
PDH 

, V HB 
PDH ] the glycolytic

ubsystem is bistable, with coexisting stable stationary and peri-

dic solutions. For V PDH < V FLC 
PDH 

the periodic solutions are no longer

resent, so the stable equilibrium is globally attracting. The effects

f V PDH on structures in the glycolytic phase plane are illustrated

n Fig. 3 B, with labels indicating the different positions in the bi-

urcation diagram. Label 1 reflects the case of moderately high gly-

olytic flux, with V PDH near v PDH , while label 3 reflects the case of

ow glycolytic flux due to the reduced PDH activity with a lower

 PDH value ( Eq. 8 ). 

How do the bifurcations depicted in Fig. 3 A change as ATP is

aried? The Hopf and fold-of-limit-cycles bifurcations continue in
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Fig. 5. Dynamics of the reduced model compared with those of the IOM. (A) For 

small k Ca 
PDH ( = 0 here) the IOM produces FBP pulses (top) in phase with square-wave- 

like s (middle) oscillations, and the reduced model ( Eqs. 15–17 ) produces square- 

wave-like σ oscillations (bottom) that capture the behavior of the full model. (B) 

The range of FBP oscillations produced by the IOM and reduced model under 

variations in k Ca 
PDH (center). Both models produce FBP pulses (left, with K Ca 

PDH = 0 ) 

and sawtooth-like FBP oscillations (right, with K Ca 
PDH = 0 . 9 ) in small and large k Ca 

PDH 

regimes, respectively. The middle panel illustrates the range of FBP values attained 

during oscillations at each value of k Ca 
PDH . Note the large drop in amplitude in both 

models when the FBP oscillations switches from a pulsatile to a sawtooth pattern. 
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the ( V PDH , ATP)-plane as curves � HB and � FLC ( Fig. 4 A, green and

red, respectively). In the region to the right of � HB (denoted P)

there are globally attracting limit cycles. In the region to the left

of � FLC , denoted S, there are globally attracting equilibria. Between

the two bifurcation curves, region B, the system has coexisting sta-

ble stationary and periodic solutions. 

Having classified regions of the ( V PDH , ATP)-plane according to

the glycolytic subsystem’s attractors, we next examine which re-

gions the IOM trajectories explore as the strength of Ca 2+ feedback

onto metabolism is varied. In the IOM, periodic bursting electrical

activity brings Ca 2+ into the cytoplasm that subsequently enters

the mitochondrial matrix. That is, bursting drives mitochondrial

Ca 2+ , c m 

, oscillations ( Fig. 4 A, top left) that regulate glycolytic ef-

flux through the Michaelis-Menten function s = s ∞ 

(c m 

) with half-

activation constant k Ca 
PDH 

( Eq. 9 ). As k Ca 
PDH 

is increased, the affin-

ity of PDH for c m 

decreases and s ∞ 

becomes less steep ( Fig. 4 A,

top right), in particular ds ∞ 

dt 
(0) = 1 /k Ca 

PDH 
. Since s ∞ 

is monotonic,

it maps [min t c m 

, max t c m 

] to [ s ∞ 

(min t c m 

), s ∞ 

(max t c m 

)]. Since

 PDH = v PDH s ∞ 

, the range of values taken on by V PDH during burst-

ing is proportional to the range of values taken on by s ∞ 

, and is

indicated by dashed lines in Fig. 4 A. Then, the projection of the

trajectory of the full IOM into the ( V PDH , ATP)-plane explores only

P if v PDH s ∞ 

(min t c m 

( t )) is to the right of � HB , as in case 1 ( Fig. 4 A1).

That is, in this case the input to the conditional glycolytic oscillator

is entirely in a region in which the oscillator is activated, so intrin-

sic glycolytic oscillations should be produced. Evidence that this in

fact occurs is given in Fig. 4 B1, which shows the pulsatile FBP os-

cillations characteristic of the isolated glycolytic oscillator ( Fig. 2 ).

The IOM explores only S if v PDH s ∞ 

(max c m 

( t )) is to the left of � FLC ,

as in case 3 ( Fig. 4 A3). In this case, the input to the conditional

glycolytic oscillator is such that it is not activated, so any oscilla-

tions in the glycolytic variables involve interactions with the other

components of the IOM, particularly the cytosolic Ca 2+ concentra-

tion. This is shown in ( Fig. 4 B3), where the FBP level exhibits a

sawtooth, rather than pulsatile, pattern. Finally, in case 2 the IOM

explores more than one of P, B, and S for intermediate k Ca 
PDH 

and

mixed mode oscillations are produced ( Fig. 4 B2). We do not ex-

plore these oscillations further, but instead focus on those of the

type produced in case 3. 

3.3. The basis of sawtooth FBP oscillations through the lens of a 

reduced model 

When the c m 

feedback parameter k Ca 
PDH 

is small, the IOM pro-

duces pulsatile FBP oscillations, since in this case the intrinsic gly-

colytic oscillator is activated ( Fig. 4 ). In this section and the next,

we address the mechanism for the sawtooth FBP oscillations that

can occur when the intrinsic glycolytic oscillator is not active. We

begin the analysis using a reduced version of the IOM that pro-

vides useful insights that are applied to the analysis of the full IOM

in the next section. The idea behind the model reduction is to keep

the glycolytic subsystem and the dynamics of the s variable (which

we rename σ in the reduced model), while removing the electri-

cal and Ca 2+ components of the IOM. To do this, the dependence of

s ∞ 

on c m 

must be replaced so that it depends on either F6P or FBP.

In the full IOM with small k Ca 
PDH 

, s = s ∞ 

(c m 

) oscillations are nearly

square pulses that are in phase with FBP ( Fig. 5 ). Thus, the most

natural approach is to make the s equilibrium function for the re-

duced model, which we denote by σ∞ 

, produce a similar square

wave pattern. This is achieved by defining σ∞ 

as a function of FBP

such that when FBP is past a threshold σ∞ 

is set to some σ max 

and when FBP is below the threshold σ∞ 

is set to some σ min : 

σ∞ 

( FBP , σ ) = 

{
σmin if FBP < T (σ ) 
σmax if FBP ≥ T (σ ) , 

(13)
here the threshold T depends on σ and is the equilibrium value

f FBP as a function of s (now called σ ) in Eqs. 6 and 7 . Thus, 

 (σ ) = 

(
2 J GK 

σ v PDH 

)2 

. (14)

ith this formulation, the reduced model is: 

dσ

dt 
= 

σ∞ 

( FBP , σ ) − σ

τσ
(15)

d F6P 

dt 
= 0 . 3(J GK − J PFK ) (16)

d FBP 

dt 
= J PFK − 1 

2 

J PDH ( FBP , σ ) , (17)

here the dependence of J PDH on FBP and σ , rather than s , is

ighlighted. The oscillations produced by this reduced model have

he same pulsatile FBP time course, with parallel pulses of σ that

re qualitatively similar to those of s generated by the full IOM

 Fig. 5 A). 

The reduced model depends on the parameters σ min , σ max , and

σ but not k Ca 
PDH 

. However, the values of these parameters can be

et to reflect the effects of k Ca 
PDH 

on the full IOM, thereby facili-

ating comparison of the dynamics produced by the two models.

e achieve this by setting σ min and σ max in the reduced model

o the asymptotic values of min t s ( t ) and max t s ( t ) recorded in the

OM simulation with the corresponding k Ca 
PDH 

. We set τσ to the ex-

onential decay time constant of s from max t s ( t ) when all other

OM state variables are frozen at a time that s achieved max t s ( t ).

sing this approach, Fig. 5 B depicts the range of FBP oscillations

enerated by the IOM and the reduced model as a function of

 

Ca 
PDH 

. The IOM and the reduced model both produce FBP pulses

or small k Ca 
PDH 

( Fig. 5 B, left) and sawtooth-like FBP oscillations for

arge k Ca 
PDH 

( Fig. 5 B, right). The minimum and maximum of the FBP

scillations as functions of k Ca 
PDH 

are shown in the middle portion of

ig. 5 B. This panel demonstrates that the amplitude changes with a
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Fig. 6. The mechanism for sawtooth FBP oscillations in the large k Ca 
PDH regime (here 

k Ca 
PDH = 1 μM) of the reduced model ( Eqs. 15–17 ). (A) A limit cycle (black) moves 

along the attracting half-planes of Z − except for fast jumps between the two sheets. 

(B) The flow of the slow (F6P,FBP) subsystem along the σ = σmin half-plane (left, 

black curves) and along the σ = σmax half-plane (right, black curves) moves up 

to the boundary (red). Before it can reach the equilibrium (yellow), the trajectory 

reaches the boundary lines (red) and rapidly jumps to the other sheet. (C) A cross 

section of panel A for fixed F6P, with projections of segments of the limit cycle 

orbit. Also included is the FBP nullcline (dark blue) which is parameterized by σ , 

forming shadows (light blue). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. (A) Relaxation oscillations of the reduced model ( Eqs. 15–17 ) in the large 

k Ca 
PDH regime (here k Ca 

PDH = 0 . 9 μM). (B) The FBP timecourse has a sawtooth pattern 

since it is a slow variable. (C) The σ timecourse is pulsatile since it is a fast variable. 
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apid transition corresponding to the passage from an active intrin-

ic glycolytic oscillator to an inactive state (and a transition from

he P region to the S region in Fig. 4 ). Overall, the FBP dynamics

enerated by the reduced model capture those of the IOM over the

ull range of k Ca 
PDH 

. 

We characterize the mechanism for sawtooth-like FBP oscilla-

ions in the large k Ca 
PDH 

regime by applying fast-slow analysis to

he reduced model, treating σ as the fast variable and F6P and FBP

s slow variables (though F6P changes more slowly than FBP). The

ritical manifold, or fast-subsystem equilibria, is the σ -nullcline 

 

− = { (σ, F6P , FBP ) ∈ R 

3 : σ∞ 

( FBP , σ ) − σ = 0 } (18)

f Eq. (15) , which consists of two half-planes ( Fig. 6 , cyan) that

ontain the stable equilibria of Eq. (15) with F6P and FBP treated

s parameters. The threshold sheet ( Fig. 6 , gray) 

 

+ = { (σ, F6P , FBP ) ∈ R 

3 : T (σ ) = FBP } (19)

ehaves as a repelling sheet in the fast subsystem since σ ap-

roaches σ min when σ is on one side of the sheet and approaches

max when on the other side. 

The orbit of the sawtooth FBP oscillation follows close to the

wo sheets of the critical manifold Z − except for rapid transitions

rom one to the next ( Fig. 6 A). These transitions occur when the

hase point reaches the boundary (red) where Z − and Z + meet.

he boundary lines of the attracting sheets are shown in red in

ig. 6 . 

The slow subsystem Eqs. 16 and (17) has equilibria parameter-

zed by σ ∈ [ σ , σ max ] (yellow curve in Fig. 6 A and yellow points
min 
n Fig. 6 B), such that at σ min the equilibrium lies on the bound-

ry line of the σ min sheet and at σ max it lies on the boundary

ine of the σ max sheet. In each case, the equilibrium is a stable fo-

us of the slow flow. The flow of the slow subsystem (black curves

n Fig. 6 B) on either sheet of Z − moves towards the equilibrium

oint but intersects the boundary line before reaching it ( Fig. 6 B),

t which time there is a rapid transition to the other sheet of Z −.

hus, the system never reaches equilibrium and instead converges

o a periodic attractor. 

As in the small k Ca 
PDH 

regime, the dynamics of the reduced

odel in the large k Ca 
PDH 

regime are approximately planar. In con-

rast to the small k Ca 
PDH 

regime for which the important dynam-

cs appear in the (FBP,F6P)-plane, the important dynamics in the

arge k Ca 
PDH 

regime appear in the ( σ , FBP)-plane ( Fig. 6 C), where it

ecomes important that F6P changes more slowly than the other

wo variables. The limit cycle trajectory moves along the projec-

ion of Z −, with vertical direction dictated by whether the phase

oint is to the left or the right of the FBP nullcline (dark blue

urve). To the left of the FBP nullcline FBP increases, while it de-

reases to the right. The FBP nullcline that is shown is actually a

rojection, parameterized by σ : the nullcline moves leftward when

BP( t ) < T ( σ ( t )) and rightward when FBP( t ) > T ( σ ( t )), as indicated

y the arrows. The past history of the nullcline is indicated as

ight blue shadows, while the dark blue curves indicate the po-

itions of the nullclines when the phase point reaches a boundary

oint. When the phase point reaches a boundary point (red circles)

t makes a rapid jump from one sheet of Z − to the other. This is a

elaxation oscillation, with σ acting as a fast variable and therefore

xhibiting square-wave pulses, and FBP acting as a slow variable

nd thus exhibiting a sawtooth pattern ( Fig. 7 ). These oscillations

ccur even if the F6P variable is frozen at an appropriate value, so

hey are truly an interaction between the fast σ variable and the

lower FBP variable. Time-dependent changes in the slowest vari-

ble, F6P, play no role. 

.4. Sawtooth FBP oscillations in the IOM 

We now move to the more complex IOM, seeking to under-

tand how the oscillation mechanism in the reduced model follows

hrough to the full model, and also determining the role played by

TP, which is not included in the reduced model. Unlike the re-

uced model, in the IOM the dynamics of s are a product of the

lectrical activity module of the IOM. We again use a fast-slow
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Fig. 8. Fast-slow analysis of bursting in the IOM. (A) The bursting trajectory (black) 

superimposed on the fast-subsystem bifurcation diagram, shown at the maximum 

value of c er during the oscillation (dark cyan) and the minimum value (light cyan). 

Fold bifurcations (green), a homoclinic bifurcation (red), and a supercritical Hopf bi- 

furcation (yellow) are all labeled. Also shown is the bursting V time course. (B) The 

codimension-1 bifurcations of panel A continued for the range of c er values taken 

on during the oscillation form increasing curves in the (ATP, c er )-plane. Also shown 

are the c er and ATP timecourses. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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analysis, but now with more fast and more slow variables. We cat-

egorize V, n , and c as fast variables, c er and FBP as variables that

change on a medium time scale, and F6P and ATP as slow vari-

ables. We also note again that ATP is related to ADP by an algebraic

equation ( Eq. 37 ), and ADP evolves through a differntial equation

( Eq. 11 ). Both ADP and ATP evolve on slow time scales. The anal-

ysis is simplified by the fact that the fast subsystem depends on

only two of the slow variables, ATP (or ADP) and c er . 

Fig. 8 shows a bifurcation diagram of the fast subsystem, with

c er clamped and ATP used as a bifurcation parameter. At large val-

ues of ATP there is a high- V branch of stable equilibria of the fast

subsystem. As ATP is decreased this branch loses stability at a su-

percritical Hopf bifurcation (HB, solid yellow triangle), giving rise

to a branch of stable periodic solutions. Each periodic solution is a

continuous train of electrical impulses, and the minimum V of the

impulses is shown as a lower branch while the maximum V of the

impulses forms an upper branch. The periodic solutions terminate

at a homoclinic bifurcation (HC, solid red circles) when the peri-

odic branch reaches a branch of saddle points. The saddle points

exist between two saddle-node or fold bifurcations (solid green cir-

cles). The rightmost fold bifuration is denoted F1, while the other

is denoted F2. At bifurcation F1 the middle branch of saddle points

folds back and creates a branch of stable equilibria that forms the

bottom branch of the s-shaped fast-subsystem bifurcation diagram.

There are actually two bifurcation diagrams shown in Fig. 8 A; the

dark cyan diagram corresponds to c er fixed at the value reached at

the end of the burst active pahse, while the light cyan diagram cor-

responds to c er fixed at the value reached at the end of the burst

silent phase. 

We next superimpose the projection of the bursting orbit (black

curve) onto the fast-subsystem bifurcation diagram N , now think-

ing of the (ATP, V )-plane as a phase plane. The phase point travels

along N except for jumps between attracting structures, because of

the time scale separation between the fast variables and ATP. Dur-

ing a burst active phase the phase point moves leftward towards

the projection of the ATP nullcline ( M , dark blue line). This null-

cline satisfies d ADP 
dt 

= 0 where d ADP 
dt 

is given in Eq. (11) , and then

ATP is obtained from Eq. 37 . Since this expression does not contain
 , the nullcline is a vertical line in the (ATP, V ) plane. However, the

ullcline does depend on s , which is a function of c m 

, assumed to

e at equilibrium with c . Hence, when the active phase trajectory

eaches the HC bifurcation and spiking stops, there is no Ca 2+ in-

ux and c m 

rapidly declines which causes s to decline and the ATP

ullcline to rapidly shift rightward (light blue vertical line). Now,

uring the burst silent phase, the phase point moves slowly right-

ard towards the ATP nullcline until it reaches the fold bifurcation

1. At this point a new active phase is initiated, raising c m 

and sub-

equently s , shifting the ATP nullcline leftward again. This series of

low motions of the phase point along the critical manifold and

ast motions of the ATP nullcline when HC and F1 bifurcations are

eached produce the electrical bursting oscillations of the IOM. 

The other slow variable, c er , influences the bursting by slowly

hifting the fast system bifurcation diagram N rightward during a

urst active phase and leftward during a silent phase. The left-right

otion of N can be summarized by continuing its codimension-1

ifurcations in the (ATP, c er )-plane ( Fig. 8 B). These bifurcations con-

inue as increasing curves, reflecting the fact that N moves right-

ard as c er increases. When the burst is projected into this plane

t forms a closed loop with clockwise orientation between a curve

f fold bifurcations ( � F1 ) and the curve of homoclinic bifurcations

 � HC ). The fast variable V exhibits a bursting oscillation ( Fig. 8 A)

hile both of the slow variables ATP and c er exhibit sawtooth os-

illations ( Fig. 8 B). 

We have so far demonstrated why ATP exhibits a sawtooth pat-

ern during bursting, but why does FBP also have such a pattern?

o see this we view the bursting in the ( s , FBP)-plane. To do this,

e make the approximation 

d F6P 
dt 

= 0 since F6P is nearly constant

n the large k Ca 
PDH 

regime ( Fig. 1 B) and use the resulting relation

 GK − J PFK ( F6P , FBP , ATP ) = 0 to write FBP in terms of ATP and F6P.

e then replot N in the ( s , FBP)-plane. 

The sawtooth FBP and ATP time courses that occur during

ursting are shown in Fig. 9 A, with labels attached to different

ime points. Fig. 9 B depicts N (cyan), M (blue), and portions of the

ursting orbit (black) in the ( s , FBP)-plane with ATP and c er fixed at

heir values during the labeled time points. The left branch of sta-

le equilibria in Fig. 9 B corresponds to the bottom branch of stable

ast-subsystem equilibria depicted in Fig. 8 A. The min/max curves

f s in the right portion of each diagram in Fig. 9 B correspond to

he min/max V curves for the fast-subsystem spiking solutions in

ig. 8 A. 

During the silent phase ( Fig. 9 , left), the trajectory (segment

hown in black) of the bursting attractor (gray) moves towards (la-

els 1 and 2) and then along (label 3) the small s equilibria curve

efore passing a fold bifurcation and moving rapidly towards the

eriodic spiking branch (label 4). This starts the burst active phase

 Fig. 9 B, right), during which the trajectory moves slowly along the

eriodic branch (labels 5 and 6) before passing the homoclinic bi-

urcation (solid red circles) and moving rapidly back to the equilib-

ia curve (label 1). The mechanism depicted in Fig. 9 B is similar to

he mechanism for sawtooth FBP oscillations of the reduced model

 Fig. 6 ) in that the periodic orbit moves slowly along and jumps

etween solution curves of the fast subsystem at small and large s

alues and that the slow-subsystem nullcline moves leftward dur-

ng the silent phase and rightward during the active phase (blue

urve and shadow in Fig. 9 B). The motion of the bursting orbit in

ig. 9 B produces sawtooth FBP oscillations and square-wave-like s

scillations, just as with the reduced model. 

.5. Ca 2+ regulation of pyruvate dehydrogenase must be rapid 

Up to this point, we have only considered PDH that re-

ponds instantaneously to Ca 2+ concentration changes by setting

 = s ∞ 

(c m 

) . In that case, we found that setting the dissociation

onstant k Ca in the Michaelis-Menten function s ∞ 

( c m 

) to larger

PDH 
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Fig. 9. The mechanism for sawtooth FBP oscillations in the IOM. (A) Sawtooth FBP 

and ATP oscillations with labels at time points during silent (labels 1–3) and ac- 

tive (labels 4–6) phases. (B) Phase portraits at the different time points, in the ( s , 

FBP)-plane. The trajectory (segments shown in black) of the bursting attractor (gray) 

moves slowly along fast-subsystem equilibria (cyan) during the silent phase with 

small s before jumping to a branch of periodic spiking solutions (with large s ) for 

the active phase. The fast-subsystem bifurcation diagram N moves leftward during 

the silent phase (left), and rightward during the active phase (right). The trans- 

formed ATP nullcline M has a similar motion. The blue curve shows its location at 

the current time point in each frame, while the shadow illustrates its motion since 

the last frame. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 10. (A) A polar plot of the relation between FBP peak phase p (0: beginning 

of active phase, 1: end of active phase) and νs in the IOM with angle 2 πp and 

radius νs = 1 /τs . (B) A representative burst for three different νs values. FBP peaks 

at phase p = . 03 , p = . 15 and p = . 44 for νs = 1 s −1 (A1,B1), νs = 1 / 30 s −1 (A2,B2), 

and νs = 1 min −1 (A3,B3), respectively. 
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alues results in sawtooth FBP oscillations that peak at the onset

f the active phase. This is consistent with time series data of FBP

evels in glucose-stimulated β-cells, where it was shown that the

BP level reliably peaked at the beginning of a burst active phase,

hile there was much greater variability in the timing of the FBP

adir Merrins et al. (2016) . However, this approach to modeling

a 2+ regulation of PDH neglects the time required for Ca 2+ con-

entration changes to affect the level of PDH activity. 

We now ask how fast this Ca 2+ effect must be to cause a de-

line in FBP level that begins at the onset of the active phase, as

een in experimental recordings. To answer this question, we add

 differential equation to the IOM that governs the approach of s

o the equilibrium s ∞ 

( c m 

) at a rate νs = 

1 
τs 

: 

ds 

dt 
= 

s ∞ 

(c m 

) − s 

τs 
, (20) 

here τ s ranges from 1 ms to 10 0 0 s, which encompasses the

imescale of slow metabolic and fast electrical processes. We then

ecord the resulting phase p ( p = 0 corresponds to the onset of

piking and p = 1 corresponds to the end of spiking) at which
BP peaks. Fig. 10 A depicts this relation as a polar plot with an-

le θ = 2 π p and radius νs = 1 /τs . As νs is decreased, the FBP

eak occurs later in the active phase, reflected by an increase

n the angle θ . In particular, setting νs = 1 s −1 results in FBP

scillations that peak at p = . 03 ( Fig. 10 A1,B1), setting νs = 1 / 30

 

−1 results in p = . 15 ( Fig. 10 A2,B2), and setting νs = 1 min 

−1 re-

ults in p = . 44 ( Fig. 10 A3,B3). We previously reported that FBP

eaked at phase 0.011 ± 0.004 ( n = 47 ) in glucose-stimulated islet

-cells Merrins et al. (2016) . According to the relation depicted

n Fig. 10 A, the value of νs must be greater than 3 s −1 , or time

onstant τ s < 333 ms, to guarantee that FBP peaks before p = . 01 .

hus, the IOM predicts that Ca 2+ regulation of PDH must occur on

 fast timescale of less than half a second to cause FBP to decline

t the onset of the active phase. This prediction could be tested

y determining the rate at which the mitochondrial Ca 2+ uniporter

ransports Ca 2+ into β-cell mitochondria and by determining the

ate at which mitochondrial dehydrogenase catalytic activity re-

ponds to step changes in the Ca 2+ concentration. 

onclusions 

Our main goal in this article was to characterize the mecha-

ism for sawtooth FBP oscillations produced by the Integrated Os-

illator Model (IOM) for pancreatic β-cells. This objective was mo-

ivated by a previously published pair of articles in which we ar-

ued, with support from FBP time series data, that Ca 2+ regula-

ion of mitochondrial dehydrogenases is the dominant form of Ca 2+ 

eedback onto metabolism ( Merrins et al., 2016 ) and that incorpo-

ating Ca 2+ regulation of pyruvate dehydrogenase (PDH) into the

ual Oscillator Model, creating the IOM, produced sawtooth FBP

scillations ( McKenna et al., 2016 ). In Fig. 1 , we showed that when

DH is saturated by Ca 2+ , FBP pulses that peak during the bursting

ctive phase are produced but when there is no saturation, saw-

ooth FBP oscillations that peak at the onset of the active phase

re produced. We showed ( Fig. 2 ) that FBP pulses are produced by

elaxation oscillations of the glycolytic subsystem that exist as long

s glycolytic efflux balances glycolytic influx, and reducing the PDH

aturation can prevent these relaxation oscillations ( Figs. 3 and 4 ). 

The sawtooth FBP oscillations that occur when the intrinsic gly-

olytic oscillations are not activated are due to Ca 2+ feedback onto

DH that regulates glycolytic efflux. Changes in the Ca 2+ concen-
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tration that occur with a switch between silent and active phases

of bursting dramatically move the equilibrium point of the gly-

colytic subsystem, so that the equilibrium is never reached. The

FBP dynamics in this case reflect the movement of the phase point

towards an equilibrium that is a moving target ( Fig. 6 ). In terms of

the reduced model ( Fig. 5 ), this is a relaxation oscillation in which

FBP is a slow variable and Ca 2+ feedback onto PDH is the fast vari-

able. Thus FBP takes on a sawtooth pattern ( Fig. 7 ). 

The full IOM also possesses these dynamics when Ca 2+ feed-

back onto glycolysis is not saturated ( Fig. 9 ), but the bursting elec-

trical activity is best understood in terms of the action of ATP

onto K(ATP) channels. Indeed, it is only through ATP (and the com-

plementary ADP) that the glycolytic subsystem interacts with the

electrical subsystem. Using a fast-slow analysis, we demonstrated

that the fast subsystem of variables is bistable, and ATP period-

ically drives the system between the silent and the active states

( Fig. 8 ). Since ATP is the slow process in this oscillation, it also

takes on a sawtooth pattern. 

Finally, we demonstrated that the Ca 2+ feedback onto glycol-

ysis must be rapid, with time constant less than half a second

in our model, for the sawtooth FBP pattern to peak at the be-

ginning of the burst active phase ( Fig. 10 ). This is crucial, since

experimental measurements of FBP have shown this behavior

Merrins et al. (2016) . 

The analysis done here complements work of a companion pa-

per Marinelli et al. (2018) , which examined transitions between

bursting oscillations driven by intrinsic glycolytic oscillations, and

thus exhibiting a pulsatile FBP pattern, and those driven by Ca 2+ 

feedback onto glycolysis and exhibiting a sawtooth FBP timecourse.

The study shows that such transitions can be achieved by varying

the strength of Ca 2+ feedback onto glycolysis, similar to what we

showed here, but also by changing an ionic conductance, which

is not part of the glyoclytic subsystem. Importantly, it shows that

compound bursting oscillations can also be produced, which have

been frequently reported in electrical and Ca 2+ measurements

from islets ( Arredouani et al., 2002; Bertram et al., 2007; Cook,

1983; Henquin et al., 1982 ). Together, the two papers illustrate that

the IOM is capable of reproducing the key oscillatory behaviors of

islet β-cells, with the intrinsic glycolytic oscillator sometimes acti-

vated and sometimes not. 
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Appendix A 

A1. List of equations 

In this section we give equations for the full model. A brief de-

scription of the model is given earlier, and a full description of the

model is given in the companion paper Marinelli et al. (2018) . 
Table A1 

Parameters for the electrical/calcium module. 

C = 5300 fF g Ca = 10 0 0 pS g K = 2700 pS 

g K(Ca) = 10 0 0 pS g K(ATP) = 260 0 0 pS V Ca = 25 mV 

V K = −75 mV νm = −20 mV s m = 12 mV 

νn = −16 mV s n = 5 mV τn = 20 ms 

k d = 0 . 5 μM k dd = 17 μM k tt = 1 μM 

k td = 26 μM f Ca = 0 . 01 α = 5 . 18 × 10 −18 μmol fA −1 ms −1 

V cyt = 1 . 15 × 10 −12 l k PMCA = 0 . 2 ms −1 k SERCA = 0 . 4 ms −1 

p leak = 2 × 10 −4 ms −1 σer = 31 

A

 

t

 

P

J  
2. The electrical and calcium module 

Membrane potential: 

dV 

dt 
= −1 

C 

[
I Ca + I K + I K(Ca) + I K(ATP) 

]
(21)

a 2+ current: 

 Ca = g Ca m ∞ 

(V )(V − V Ca ) 

nstantaneous activation function for I Ca : 

 ∞ 

(V ) = 

1 

1 + exp [(νm 

− V ) /s m 

] 
. (22)

ctivation variable for I K : 

dn 

dt 
= 

n ∞ 

(V ) − n 

τn 
, (23)

here n ∞ 

( V ) is a sigmoid of the form (22) , but with shape param-

ters νn and s n . 

Delayed rectifying K 

+ current: 

 K = g K n (V − V K ) 

a 2+ -activated K 

+ current: 

 K(Ca) = g K(Ca) q ∞ 

(c)(V − V K ) (24)

nstantaneous activation function for I K(Ca) : 

 ∞ 

(c) = 

c 2 

k 2 
d 

+ c 2 

TP-sensitive K 

+ current: 

 K( ATP ) = g K( ATP ) o ∞ 

( ADP , ATP )(V − V K ) (25)

nstantaneous activation function for I K(ATP) : 

 ∞ 

( ADP , ATP ) = 

0 . 08 + 0 . 89 

(
MgADP 

k dd 

)2 + 0 . 16 

(
MgADP 

k dd 

)
(
1 + 

MgADP 
k dd 

)2 
(

1 + 

ATP 4 −

k tt 
+ 

ADP 3 −

k td 

) , 

here MgADP = 0 . 165 ADP , ADP 3 − = 0 . 135 ADP , and ATP 4 − =
 . 05 ATP . 

Free cytosolic Ca 2+ concentration: 

dc 

dt 
= f Ca (J mem 

− J er ) (26)

a 2+ flux across plasma membrane: 

 mem 

= −
[

α

V cyt 
I Ca + k PMCA c 

]
(27)

a 2+ flux across the endoplasmic reticulum (ER) membrane: 

 er = k SERCA c − p leak (c er − c) (28)

ree Ca 2+ concentration in the ER: 

dc er 

dt 
= f Ca σer J er (29)

3. The metabolic module 

Cytosolic concentrations of fructose 6-phosphate (F6P) and fruc-

ose 1,6-bisphosphate (FBP): 

d F6P 
dt 

= 0 . 3 ( J GK − J PFK ) 
d FBP 

dt 
= J PFK − 1 

2 
J PDH 

(30)

FK reaction rate: 

 PFK = v PFK 

w 1110 + k PFK 

∑ 

i, j,l∈{ 0 , 1 } w i j1 l ∑ 

i, j,k,l∈{ 0 , 1 } w i jkl 

(31)
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Table A2 

Parameters for the metabolic module. 

J GK = 0 . 001 μM ms −1 v PFK = 0 . 01 μM ms −1 k PFK = 0 . 06 K 1 = 30 μM 

K 2 = 1 μM K 3 = 5 × 10 4 μM K 4 = 10 3 μM f 13 = 0 . 02 

f 23 = 0 . 2 f 41 = 20 f 42 = 20 f 43 = 20 

v PDH = 0 . 001 μM ms −1 K Ca 
PDH = 1 μM τa = 30 0 0 0 0 ms A tot = 30 0 0 μM 

w

w

w

J  

o

J

E

s

A

A

A

w

A

 

s  

a

 

a  

τ  

L  

c  

o  

T  

m  

m

w  

e  

g  

i

 

w

 

t

b

d  

s

w  

 

c  

t  

h  

fl  

e

w

 

t  

m  

J  

l

w  

 

t  

m  

J  

s

w  

 

c  

c  {
t  

o  

f

w  
ith weights 

 i jkl = 

( AMP /K 1 ) 
i 
( FBP /K 2 ) 

j 
( F6P /K 3 ) 

k 
( ATP /K 4 ) 

l 

f ik 
13 

f jk 
23 

f il 
41 

f jl 
42 

f kl 
43 

(32) 

here AMP = 

ADP 2 

ATP 
. 

PDH reaction rate: 

 PDH = v PDH s ∞ 

(c m 

) 
√ 

FBP (33)

r 

 PDH = v PDH s 
√ 

FBP (34) 

quilibrium flux function for PDH: 

 ∞ 

(c m 

) = 

c m 

K PDH + c m 

(35) 

DP concentration: 

d ADP 

dt 
= 

{
ATP − exp 

[(
1 + 2 . 2 

J PDH 

0 . 05+ J PDH 

)(
1 − c 

0 . 35 

)]
ADP 

}
τa 

(36) 

TP concentration: 

TP = 

1 

2 

[ 
A tot + 

√ 

−4 ADP 

2 + (A tot − ADP ) 2 − ADP 

] 
(37) 

here A tot is the total nucleotide concentration. 

4. Time scale analysis 

The variables in the model evolve over a large range of time

cales. We partition then into three classes, based on the time scale

nalysis below. 

V time scale: 

Define the dimensionless voltage V̄ = 

V 
k V 

where k V = 100 mV is

 typical voltage scale. Then define a dimensionless time variable

= 

t 
k t 

where k t = 60 , 0 0 0 ms (1 min) is a typical slow time scale.

et g max be an upper bound on the total conductance of the ion

hannels during slow bursting oscillations. That is, an upper bound

n g Ca m ∞ 

+ g K n + g K(Ca) q ∞ 

+ g K(ATP) o ∞ 

. We use g max = 10 0 0 pS.

he membrane time constant is then τV = 

C 
g max 

≈ 5 . 3 ms. The di-

ensionless conductances have the form ḡ x = 

g x 
g max 

. Then the di-

ensionless V equation is 

d ̄V 

dτ
= − 1 

τ̄V 

∑ 

Ī , (38) 

here 
∑ 

Ī is the sum of the currents (as in Eq. 21 ), where

ach current is dimensionless and is O(1) . For example, Ī Ca =
¯ Ca m ∞ 

( ̄V − V̄ Ca ) , where V̄ Ca = 

V Ca 
k V 

. The dimensionless V time scale

s then τ̄V = 

τV 
k t 

≈ 10 −4 . 

n time scale: 

The dimensionless n differential equation is 

dn 

dτ
= 

1 

τ̄n 
(n ∞ 

− n ) , (39)

here the dimensionless n time scale is τ̄n = 

τn 
k t 

≈ 3 × 10 −4 . 

c time scale: 

Define k c = 0 . 2 μM as an upper bound on the free Ca 2+ concen-

ration during slow bursting. The dimensionless c is c̄ = 

c 
k c 

. Let k 1 

e an upper bound on the absolute value of the Ca 2+ flux J mem 

− J er 
uring slow bursting. We use k 1 = 0 . 1 μM/ms. Then the dimen-

ionless c differential equation is: 

d ̄c 

dτ
= 

1 

τ̄c 
( ̄J mem 

− J̄ er ) , (40) 

here J̄ x = 

J x 
k 1 

, and where the dimensionless c time scale is τ̄c =
k c 

k 1 k t f Ca 
≈ 3 × 10 −3 . 

c er time scale: 

Define k er = 350 μM as an upper bound on the free Ca 2+ con-

entration in the ER during slow bursting. The dimensionless c er is

hen c̄ er = 

c er 
k er 

. The flux of Ca 2+ into the ER during slow bursting

as an upper bound of k 2 = 0 . 025 μM/ms, so the dimensionless

ux can be defined as J̄ er = 

J er 
k 2 

. The dimensionless c er differential

quation is then 

d ̄c er 

dτ
= 

1 

τ̄er 
J̄ er , (41) 

here the dimensionless c er time scale is τ̄er = 

k er 
k t f Ca k 2 σer 

≈ 0 . 75 . 

F6P time scale: 

Define k F6P = 30 μM as an upper bound on the F6P concentra-

ion during the slow bursting produced with K 

Ca 
PDH 

= 1 μM. The di-

ensionless F6P concentration is then 

¯F6P = 

F6P 
k F6P 

. The difference

 GK − J PFK is bounded above by k 3 = 10 −4 μM/ms. The dimension-

ess F6P differential equation is then 

d ¯F 6 P 

dτ
= 

1 

τ̄F6P 

(
J̄ GK − J̄ PFK 

)
, (42) 

here J̄ x = 

J x 
k 3 

and the dimensionless F6P time scale is τ̄F6P =
k F6P 

0 . 3 k 3 k t 
≈ 17 . 

FBP time scale: 

Define k FBP = 60 μM as an upper bound on the FBP concen-

ration during slow bursting produced with K 

Ca 
PDH 

= 1 μM. The di-

ensionless FBP concentration is then 

¯FBP = 

FBP 
k FBP 

. The difference

 PFK − 1 
2 J PDH is bounded above by k 4 = 5 × 10 −4 μM/ms. The dimen-

ionless FBP differential equation is then 

d ¯FBP 

dτ
= 

1 

τ̄FBP 

(
J̄ PFK − 1 

2 

J̄ PDH 

)
, (43) 

here J̄ x = 

J x 
k 4 

and the dimensionless FBP time scale is τ̄FBP =
k FBP 
k 4 k t 

≈ 2 . 

ADP time scale: 

Define k ADP = 900 μM as an upper bound on the ADP

oncentration during slow bursting. The dimensionless ADP

oncentration is then 

¯ADP = 

ADP 
k ADP 

. Define the function F =
 

ATP − exp 

[ (
1 + 2 . 2 

J PDH 
0 . 05+ J PDH 

)(
1 − c 

0 . 35 

)] 
ADP 

} 

, the numerator in 

he right hand side of Eq. (36) . This function has an upper bound

f k 5 = 400 μM during slow bursting. The dimensionless ADP dif-

erential equation is then 

d ¯ADP 

dτ
= 

1 

τ̄ADP 

F̄ , (44) 

here F̄ = 

F 
k 5 

and the dimensionless ADP time scale is τ̄ADP =
k ADP τa 

k k t 
≈ 11 . 
5 
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ATP time scale: 

ATP is related algebraically to ADP through Eq. (37) . Define

k ATP = 1800 μM as an upper bound on the ATP concentration dur-

ing slow bursting. The dimensionless ATP concentration is then
¯ATP = 

ATP 
k ATP 

. With the usual definition for dimensionless time con-

stant τ , the rate of change of ¯ATP with respect to τ is then 

d ¯ATP 

dτ
= 

(
dATP 

dADP 

)(
k ADP 

k ATP 

)(
1 

τ̄ADP 

F̄ 

)
(45)

The derivative dATP 
dADP 

can be computed from Eq. (37) , 

dATP 

dADP 

= −1 

2 

( 

3 ADP + A tot √ 

−4 ADP 

2 + (A tot − ADP ) 2 
+ 1 

) 

(46)

and during slow bursting dATP 
dADP 

≈ − 1 
2 . Thus, 

d ¯ATP 

dτ
≈

(−1 

2 

)(
900 

1800 

)(
1 

τ̄ADP 

F̄ 

)
(47)

and therefore the dimensionless ATP time scae is τ̄ATP ≈ 4 ̄τADP =
44 . 

s time scale: 

In most of the analysis s is assumed to be at quasi-steady state.

However, in the last section of Results its dynamics are described

by a differential equation ( Eq. 20 ). In this case, the dimensionless

s differential equation is 

ds 

dτ
= 

1 

τ̄s 
(s ∞ 

− s ) , (48)

where the dimensionless s time scale is τ̄s = 

τs 
k t 

. The time constant

τ s is varied from 10 −3 to 10 3 s, so the dimensionless s time con-

stant varies from ≈ 10 −8 to 10 −2 . 

Time scale classification: 

From this analysis, we partition the variables into fast ( V, n, c,

s ), medium ( c er and FBP), and slow (F6P, ADP or ATP). 
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