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A B S T R A C T

Electrical bursting oscillations in the 𝛽-cells of pancreatic islets have been a focus of investigation for more
than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay–
Keizer model. This article describes the key biophysical and mathematical elements of this model, and then
describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and
a deconstruction of the IOM that describes the various elements that have been added to the model over
time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the
publication of the Chay–Keizer model.
1. Introduction

Teresa Chay and Joel Keizer developed and published the first
biophysical model of electrical bursting activity and Ca2+ oscillations in
pancreatic 𝛽-cells in 1983 [1], based on the hypothesis of Atwater and
Rojas that slow negative feedback by intracellular Ca2+ drives bursting
through actions on Ca2+-activated K+ channels [2]. In the 40 years
since, many 𝛽-cell modeling papers have appeared, almost all of which
were influenced by the Chay–Keizer model [3–13]. (See [14] for a recent
review of single-cell and whole-islet models.) John Rinzel simplified
the model, and used it to perform pioneering work on the analysis
of bursting oscillations by decomposing the system of equations into
fast and slow subsystems [15]. This fast–slow analysis, in which each
subsystem is analyzed independently and then stitched together to un-
derstand the full bursting dynamics, has been used in most subsequent
studies of bursting electrical activity [16–25]. In short, the Chay–Keizer
model has been very influential from both biological and mathematical
perspectives. The only limitation of the model, which was unavoidable
was the incomplete knowledge of 𝛽-cell ionic currents at the time the
model was developed.

This article mainly tells the story of one mathematical model for
bursting in 𝛽-cells that was developed over the past two decades,
and whose origin can be traced back to the Chay–Keizer model. This
Integrated Oscillator Model (IOM) continues to evolve, but the 40th
anniversary of the Chay–Keizer model that started it all is a good time
to look back over the long and winding road that led to the IOM in its
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current form. The model includes components for electrical activity and
intracellular Ca2+ handling, as well as metabolism, which is coupled
to both. It is able to account for fast bursting with a period of tens of
seconds as well as slow bursting with a period of several minutes. Both
forms of bursting are commonly observed in mouse islets [26–29], as
is a hybrid of the two called compound bursting that consists of slow
episodes of fast bursts [28,30–32].

The model name comes from the co-existence of two oscillation
mechanisms, one based on mutual interactions between intracellular
Ca2+ and the cell’s electrical subsystem, and the other based on an
intrinsic glycolytic oscillator. In the initial version of the model the
two oscillators were weakly coupled, motivating the original name Dual
Oscillator Model [33]. More recent experimental data led to revisions
that increased the coupling strength between the two oscillators so that
they are more integrated, motivating the current model name [34].
In this article, we describe the evolution of the model, as well as the
mathematical underpinnings of the model dynamics.

2. The Chay–Keizer model

In its original form [1], the Chay–Keizer model is 5-dimensional,
with differential equations for the membrane potential (𝑉 ), two acti-
vation and one inactivation variables, and the free intracellular Ca2+

concentration (𝑐). The essential dynamics can, however, be produced
with a three-dimensional version that includes differential equations
for 𝑉 , the fraction of open K+ channels (𝑛), and 𝑐. This reduced model
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simplifies the analysis, is used in the IOM, and replicates the results of
the original model. The differential equations are:
𝑑𝑉
𝑑𝑡

= −[𝐼Ca + 𝐼K + 𝐼K(Ca) + 𝐼K(ATP)]∕𝐶𝑚 (1)

𝑑𝑛
𝑑𝑡

=
𝑛∞(𝑉 ) − 𝑛

𝜏𝑛
(2)

𝑑𝑐
𝑑𝑡

= 𝑓𝑐𝐽mem . (3)

The right hand side of the 𝑉 equation (Eq. (1)) is the sum of the
ionic currents, divided by the membrane capacitance (a parameter).
The first term (𝐼Ca) is an inward Ca2+ current that depolarizes the
membrane and produces the upstroke of an action potential. It activates
rapidly, and its activation state is assumed to change instantaneously
with 𝑉 . The second term (𝐼K) is the outward delayed rectifying current,
which is responsible for the downstroke of an action potential. Its
activation occurs on a slower time scale, and is therefore described by
a differential equation.

Equations for these spiking currents, which resemble those of
Hodgkin and Huxley for conductances of the squid giant axon [35] are:

𝐼Ca = 𝑔Ca𝑚∞(𝑉 )(𝑉 − 𝑉Ca) (4)
𝐼K = 𝑔K𝑛(𝑉 − 𝑉K) (5)

where 𝑔Ca and 𝑔K are maximum conductance parameters, 𝑚∞(𝑉 ) is the
equilibrium fraction of open Ca2+ channels, and 𝑛 is the fraction of open
delayed rectifying K+ channels with dynamics described by Eq. (2). The
𝑉 -dependent equilibrium activation functions are increasing sigmoids:

𝑚∞(𝑉 ) = 1

1 + exp
(

𝑣𝑚−𝑉
𝑠𝑚

) (6)

𝑛∞(𝑉 ) = 1

1 + exp
(

𝑣𝑛−𝑉
𝑠𝑛

) (7)

where 𝑣𝑚 and 𝑣𝑛 are parameters that set the half-maximum, and 𝑠𝑚 and
𝑠𝑛 set the slope of the sigmoids.

The third term (𝐼K(Ca)) in the 𝑉 equation describes the ionic current
through Ca2+-activated K+ channels, in which the channel gating is
determined by the intracellular Ca2+ concentration rather than the
membrane potential. The time dynamics of the conductance is therefore
dictated by the dynamics of the intracellular Ca2+ concentration, and
channel activation is described by a Hill function that increases with 𝑐.
This current is:

𝐼K(Ca) = 𝑔K(Ca)

(

𝑐𝑛𝑘
𝐾𝑛𝑘

𝑑 + 𝑐𝑛𝑘

)

(𝑉 − 𝑉K) (8)

where 𝑔K(Ca) is a parameter for the maximal conductance, 𝑛𝑘 is the
Hill coefficient, and the parameter 𝐾𝑑 sets the half-activation point.
As we shall see shortly, this current plays a key role in the production
of bursting.

The fourth term (𝐼K(ATP)) in the 𝑉 equation was not in the original
Chay–Keizer model, since it describes an ionic current that had not
yet been discovered when the Chay–Keizer model was published in
1983. This current, through ATP-sensitive K+ channels, was shown
in 1984 to be directly inhibited by glucose metabolism [36,37]. It
was later shown to be activated by adenosine diphosphate (ADP)
and inhibited by adenosine triphosphate (ATP), so that its activation
state depends approximately on the ratio of the nucleotide concentra-
tion, i.e., ATP/ADP [38]. As we shall see later, temporal variation of
ATP/ADP and its effect on current through K(ATP) channels plays a
major role in the production of slow bursting, but since the focus of
the Chay–Keizer model was on fast bursting, we include the current
here only as an additional K+ current with constant conductance. The
K(ATP) current used in this model is then:

𝐼K(ATP) = 𝑔K(ATP)(𝑉 − 𝑉K) (9)

where 𝑔 is a conductance parameter.
2

K(ATP)
Table 1
Chay–Keizer model parameter values.

Parameter Value Parameter Value

𝑔Ca 1000 pS 𝑔K 2700 pS
𝑔K(Ca) 400 pS 𝑔K(ATP) 180 pS
𝐶𝑚 5300 fF 𝜏𝑛 20 ms
𝑓𝑐 0.001 𝛼 1.125 × 10−6 μmol fA−1 l−1ms−1
𝑘pmca 0.045 ms−1 𝐾𝑑 0.3 μM
𝑉Ca 25 mV 𝑉K −75 mV
𝑣𝑚 −20 mV 𝑣𝑛 −16 mV
𝑠𝑚 12 mV 𝑠𝑛 5 mV
𝑛𝑘 3

Fig. 1. Bursting produced by a 3-dimensional Chay–Keizer model. (A) Fast bursting,
consisting of active phases where the model cell is spiking and silent phases where it
is hyperpolarized. (B) The free intracellular Ca2+ concentration has a slow sawtooth
pattern, rising during each burst active phase and declining during each silent phase.
(C) The K(Ca) conductance responds to the Ca2+ concentration, exhibiting a similar
sawtooth pattern. Parameter values are given in Table 1.

The right hand side of the 𝑐 differential equation (Eq. (3)) has a
single term for the net flux of Ca2+ across the plasma membrane (𝐽mem)
multiplied by the fraction of Ca2+ that is in a free state (𝑓𝑐). The influx
of Ca2+ into the cell is through Ca2+ channels, so is proportional to 𝐼Ca.
The efflux is through plasma membrane Ca2+ pumps, and this efflux is
assumed to be proportional to 𝑐. Thus, the net Ca2+ flux is:

𝐽mem = −(𝛼𝐼Ca + 𝑘pmca𝑐) (10)

where 𝛼 is a parameter that converts current to flux, and 𝑘pmca is a
parameter for the pumping strength.

Calcium dynamics drive fast bursting

The Chay–Keizer model produces fast electrical bursting (Fig. 1A)
due to the slow buildup of free intracellular Ca2+ (Fig. 1B) that peri-
odically terminates electrical spiking through the activation of K(Ca)
channels (Fig. 1C). The Ca2+ concentration builds up because of influx
through voltage-dependent Ca2+ channels. Once the outward current
through K(Ca) channels reaches a sufficiently high level, the membrane
potential no longer reaches the spike threshold and the burst of action
potentials ends. The cell then enters a silent phase, during which Ca2+

removal through plasma membrane pumps slowly reduces 𝑐 and the
K(Ca) conductance. Once this conductance becomes sufficiently small,
the membrane potential again reaches the spike threshold, terminating
the burst silent phase and starting a new burst active phase.

There are two important things to note about the bursting in Fig. 1.
The first is that 𝑐 changes on a much slower time scale than 𝑉 (and the
activation variable 𝑛, which is not shown). The second is that for the
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Fig. 2. Bistable dynamics of the Chay–Keizer fast subsystem, with 𝑐 = 0.12 μM. (A)
Phase portrait showing the 𝑉 nullcline (black, solid), 𝑛 nullcline (black, dotted), a
continuous spiking limit cycle (red), and a trajectory leading to the stable node (blue).
The equilibrium points are a stable node (black, filled circle), an unstable spiral (black,
unfilled circle), and a saddle point (black, unfilled triangle). (B) Time courses of the
continuous spiking limit cycle (red) and trajectory (blue) leading to the low-𝑉 stable
equilibrium. Parameter values are given in Table 1.

Fig. 3. Fast–slow analysis of the 3-dimensional Chay–Keizer model. (A) Bifurcation
diagram of the fast subsystem. Stable (solid) and unstable (dotted) equilibria are
in black. The minimum and maximum 𝑉 of the stable periodic spiking solutions
are in red. There is a subcritical Hopf bifurcation (filled circle), two saddle–node
bifurcations (squares), and a homoclinic bifurcation (triangle). (B) The 𝑐-nullcline
(green) is superimposed on the bifurcation diagram. Also superimposed is the burst
trajectory (magenta). Parameter values are given in Table 1.

same value of 𝑐 the model cell can either be spiking or silent. That is,
if the slow variable 𝑐 were to be held fixed at any value taken on during
bursting, the fast subsystem (𝑉 and 𝑛) would be bistable.

The fast-subsystem dynamics can be viewed in the (𝑛, 𝑉 ) phase
plane, as in Fig. 2A. This shows three intersections of the 𝑛 nullcline
(black, dotted line) and cubic-like 𝑉 nullcline (black, solid line), cor-
responding to a stable node (the silent state), an unstable spiral at
a depolarized voltage, and a saddle point. In addition to the stable
equilibrium, there is a stable limit cycle (in red) surrounding the
unstable spiral, corresponding to a periodic spiking state. The basins of
attraction of these two attractors are separated by the stable manifold of
the saddle point. Time courses leading to the two attractors are shown
in Fig. 2B.

This description of the fast subsystem dynamics is for an
appropriately-chosen value of the slow variable 𝑐. A summary of the
3

asymptotic dynamics of the fast subsystem over a large range of values
of 𝑐 is shown with a bifurcation diagram, treating 𝑐 as the bifurcation
parameter, in Fig. 3A. (The diagram extends into negative non-physical
values of 𝑐.) There are two intervals in which the equilibrium is stable,
indicated by the solid black branches of the diagram. There is also a
branch of stable periodic spiking solutions, indicated in the diagram
with two red curves (the minimum and maximum voltage values taken
on during the oscillation). Branches are born or change stability at
a subcritical Hopf bifurcation (circle), two saddle–node bifurcations
(squares), and a homoclinic bifurcation in which the period of the
spiking solution approaches infinity (triangle). A key feature of the
diagram is an interval of bistability between the left saddle–node and
the homoclinic bifurcation. The value of 𝑐 used in Fig. 2 falls within
this interval, which is necessary, but not sufficient, for bursting in the
Chay–Keizer model.

To perform a fast–slow analysis, one treats the fast-subsystem bi-
furcation diagram, often referred to as the critical manifold, as a gen-
eralized 𝑉 -nullcline. In this spirit, the 𝑐-nullcline is superimposed onto
the diagram (Fig. 3B, focusing now on the bistable interval). As with
a standard phase plane analysis, one can use the curves to determine
the flow of the trajectory in the (𝑐, 𝑉 ) plane, noting that horizontal
flow is much slower than vertical flow since 𝑐 changes slowly compared
to 𝑉 . The burst trajectory, superimposed in magenta, can then be
understood in terms of this flow much in the same way that relaxation
oscillations are analyzed in the phase plane. During the silent phase of
the burst, the trajectory follows the lower stable branch of the manifold
(acting as the nullcline of the fast variable 𝑉 ) until it terminates at a
saddle–node bifurcation. From here, the trajectory moves upward to
the stable periodic spiking branch. Since it has crossed the 𝑐-nullcline,
the direction of flow switches from left to right, so the trajectory moves
rightward along the spiking branch until it terminates at a homoclinic
bifurcation. This is the active phase of the burst. Once the trajectory
passes through the homoclinic bifurcation, it moves downward to the
stable stationary branch and the flow switches to the left as it begins a
new silent phase. The burst is a complex stable limit cycle, but as we see
here, it can be clearly understood with the aid of the critical manifold
and the slow-variable nullcline. This fast–slow analysis of bursting,
pioneered by John Rinzel [22], has been applied to many models of
bursting [25,39].

The Chay–Keizer model provides an explanation for the glucose response

The function of pancreatic 𝛽-cells is to transduce the blood glucose
level into insulin secretion, so that more insulin is secreted when the
glucose level is elevated. A primary way of doing this is to regulate
the cell’s electrical activity. When the glucose is at a subthreshold
level, the cell is electrically silent. When it is at a stimulatory level
and the cell is bursting, an increase in the glucose level increases the
duration of the burst active phase relative to the silent phase. When the
glucose level is very high, the cell spikes continuously. This glucose
modulation of activity can be described in terms of the burst plateau
fraction, which is the ratio of the active phase duration to the entire
burst period. Islet studies have shown that the plateau fraction rises
monotonically from 0 to 1 as the glucose level is increased [40]. In
addition to demonstrating a plausible mechanism for bursting electrical
activity, the Chay–Keizer model also provided a plausible mechanism
for this fundamental feature of 𝛽-cell electrical activity. Glucose is
transported into the cell and metabolized to ATP. At the time that the
model was published, it was not known that there are K+ channels
that are closed by ATP, so Chay and Keizer proposed that the ATP
increases the activity of plasma membrane Ca2+ pumps via hydrolysis.
In terms of the model, this means that an increase in the glucose level
would increase the parameter 𝑘pmca. The effect of doing this is shown
in Fig. 4A. For a bursting model cell, increasing glucose increases the
active phase duration while decreasing the silent phase duration, as
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Fig. 4. Explanation for the response to glucose in the Chay–Keizer model. (A) Increases
in the extracellular glucose concentration are simulated by increasing the parameter
for the activity of plasma membrane Ca2+ pumps, 𝑘pmca. In this simulation, 𝑘pmca (units
of ms−1) is increased from 0.025, to 0.035, to 0.055, and finally to 0.065 as indicated.
(B) The fast-subsystem bifurcation diagram is unaffected by the change in 𝑘pmca, which
only acts by shifting the 𝑐-nullcline upward. Parameter values are given in Table 1.

Fig. 5. Recording of the intracellular Ca2+ concentration from a mouse pancreatic islet
using the fluorescent dye fura-2. The Ca2+ profile has a sharp rise at the beginning of
a burst, followed by a plateau, and then an initial sharp decline followed by a slow
falloff during the silent phase. This is in contrast with the sawtooth shape predicted
by the Chay–Keizer model (Fig. 1).
Source: Reproduced from [28].

in experiments. At the highest level shown the bursting is replaced by
continuous spiking.

This effect can be understood nicely using fast–slow analysis. Since
the 𝑘pmca parameter does not appear in either the 𝑉 or the 𝑛 differential
equation, changing it has no impact on the fast-subsystem bifurcation
diagram. It only appears in the 𝑐 differential equation, and impacts
𝑐 in part by shifting the 𝑐-nullcline upward when 𝑘pmca is increased
(Fig. 4B). At the lowest value, 𝑘pmca = 0.025 ms−1, the nullcline
intersects the bottom branch of the critical manifold. This intersection
is an equilibrium of the full system of equations, and since the bottom
branch is stable so too is this equilibrium. As a result, the model cell is
silent. When 𝑘pmca is increased to 0.035 ms−1, the intersection with the
critical manifold is on the unstable middle branch, so the full-system
equilibrium is unstable. In this case, a bursting oscillation is produced
as shown in Fig. 3B. Bursting also occurs with the higher value 𝑘pmca =
0.055 ms−1. The 𝑐-nullcline is shifted upward even higher, but the
burst trajectory, when superimposed on the critical manifold, looks
very similar to Fig. 3B. The burst active phase starts at the lower knee
(saddle–node bifurcation) and ends near where the periodic branch
meets the unstable middle branch of the critical manifold (homoclinic
bifurcation), just as before. All that changes when the 𝑐-nullcline is
4

raised is the speed at which the trajectory moves through the two
phases of the burst. When the phase point travels along the lower
branch of the critical manifold during the silent phase it is further from
the equilibrium 𝑐 value and moves faster with the larger value of 𝑘pmca.
When traveling along the periodic branch during the active phase, the
phase point is now closer to the 𝑐-nullcline, so it moves more slowly. As
a result, the silent phase is now shorter and the active phase longer with
the larger 𝑘pmca value and the plateau fraction is thus greater. Finally,
at the highest value of 𝑘pmca shown the 𝑐-nullcline intersects deep into
the periodic branch, trapping the trajectory in the spiking state. It no
longer cycles between the bottom branch and periodic branch of the
critical manifold, but instead stays on the periodic branch. (The third
𝑐-nullcline also intersects the periodic branch, and if the time scale
separation were increased the phase point would also get stuck here
in the continuous spiking state [41].)

3. Phantom bursting models

Sawteeth and square waves

Despite the impact that the Chay–Keizer model has had on the
understanding of bursting in 𝛽-cells and fast–slow analysis, it became
apparent shortly after its publication that the model was wrong, or at
least fundamentally incomplete. Once fluorescent dyes for Ca2+ were
developed and used with islets, it was clear that the Ca2+ traces did not
have the sawtooth shape predicted by the Chay–Keizer model (Fig. 1B),
but instead had more of a square-wave shape, with a slow decline at
the end of each burst (Fig. 5). Indeed, the Ca2+ concentration looked
more like a fast variable than a slow one. Making Ca2+ into a fast
variable is easily achieved, by increasing the fraction of Ca2+ that is
free from 0.001 to the more realistic value of 0.01 (as in Table 2),
but then the model cell does not burst, and even with parameter
changes any bursting that is achieved has a much smaller period. The
observation that 𝑐 is not a slow variable prompted the development
of a number of other models postulating different slow variables, such
as the inactivation of Ca2+ channels [10], the ATP/ADP ratio acting
through K(ATP) channels [9,42], and the activity-dependent varia-
tion in Na+ and K+ concentrations and their impact on electrogenic
ion pumps [7,43,44]. However, Teresa Chay found a way to rescue
the Chay–Keizer model while retaining the K(Ca) current as the key
electrical current underlying bursting [6]. This was done by adding
a second Ca2+ compartment, the endoplasmic reticulum (ER), which
acts as an intracellular Ca2+ store. During the burst active phase the
Ca2+ concentration in the ER (cER) slowly builds up, and during the
silent phase, the ER slowly releases Ca2+ into the cytosol. This allows
the cytosolic Ca2+ concentration to be fast, but with slow components
due to modulation by the ER Ca2+ concentration, which becomes the
slow variable dictating the start and end of each burst active phase.
Experiments reported 15 years later confirmed that slow oscillations in
cER indeed occur during bursting [45].

The faster dynamics and square-wave shape of 𝑐 solve another prob-
lem: although the original Chay–Keizer model successfully explained
the increased plateau fraction when glucose concentration is increased,
this does not lead to higher Ca2+ concentration when the time course is
a sawtooth. With a square-wave shape, the average Ca2+ concentration
does increase and can account for increased insulin secretion.

A version of the Chay–Keizer model with an ER-Ca2+ compartment
was later implemented in a model from our group [4]. The 𝑉 and 𝑛
differential equations are the same as Eq. (1), (2), but now there are
two Ca2+ concentration equations, for the cytosol and the ER:

𝑑𝑐
𝑑𝑡

= 𝑓𝑐 (𝐽mem + 𝐽ER) (11)
𝑑𝑐ER = −𝑓 𝜎 𝐽 . (12)

𝑑𝑡 𝑐 𝑣 ER
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Fig. 6. Bursting produced by a Chay–Keizer model with an added compartment for the
Ca2+ concentration in the ER. (A) Bursting electrical activity. (B) The cytosolic Ca2+

concentration no longer has a sawtooth pattern, but instead looks more like a square
wave. (C) The ER Ca2+ concentration exhibits a sawtooth pattern; it is the slowest
variable in the system. Parameter values are given in Table 2.

Table 2
Parameter values for the Chay–Keizer model with an ER.

Parameter Value Parameter Value

𝑔Ca 1200 pS 𝑔K 3000 pS
𝑔K(Ca) 800 pS 𝑔K(ATP) 230 pS
𝐶𝑚 5300 fF 𝜏𝑛 16 ms
𝑓𝑐 0.01 𝛼 4.5 × 10−6 μmol fA−1 l−1 ms−1
𝑘pmca 0.2 ms−1 𝐾𝑑 0.3 μM
𝑉Ca 25 mV 𝑉K −75 mV
𝑣𝑚 −20 mV 𝑣𝑛 −16 mV
𝑠𝑚 12 mV 𝑠𝑛 5 mV
𝑘SERCA 0.4 ms−1 𝜎𝑣 5
𝑛𝑘 5 𝑝leak 0.0005 ms−1

where 𝐽mem is the same as before, and the net flux of Ca2+ into the
cytosol from the ER is

𝐽ER = 𝐽leak − 𝐽SERCA (13)

where 𝐽leak = 𝑝leak (𝑐ER − 𝑐) is the leak across the ER membrane and
𝐽SERCA = 𝑘SERCA𝑐 is the flux into the ER through sarcoplasmic endo-
plasmic reticulum Ca2+ (SERCA) pumps. The cER differential equation
includes a parameter for the ratio of volumes of the cytosol and the ER
(𝜎𝑣). All parameter values are given in Table 2.

This augmented Chay–Keizer model was used to generate Fig. 6,
which shows bursts of electrical activity and corresponding Ca2+ traces.
The cytosolic Ca2+ time course looks very different from Fig. 1, with
the sawtooth pattern replaced by a square wave. At the end of an active
phase, 𝑐 declines rather than rises, reflecting the exchange of Ca2+ from
the ER to the cytosol and out of the cell through Ca2+ pumps. The
Ca2+ concentration in the ER is now the variable with a sawtooth time
course, since it is the slowest variable of the system.

Understanding phantom bursting using fast–slow analysis

The Chay–Keizer model with ER represents a departure from pre-
vious models in the family because it has two slow variables, 𝑐 and
cER, instead of one. Both contribute to bursting to different degrees,
depending on parameters, so the ‘‘slow variable’’ can be viewed as a
composite of the two rather than a single physical variable. This gave
rise to the term phantom bursting [46].

One could perform a fast–slow analysis with either cER or 𝑐 as the
single slow variable. Since c acts on the membrane only through the
5

ER
Fig. 7. Fast–slow decomposition of bursting produced by the Chay–Keizer model with
an ER compartment. Two 𝜔-nullclines (green) are shown, for 𝑐ER = 91 μM and 𝑐ER = 102
μM. The latter intersects the bottom branch of the critical manifold, while the former
does not. The burst trajectory is superimposed (magenta). Parameter values are given
in Table 2.

effect of 𝑐 on K(Ca) channel conductance, we choose to use a measure
of this conductance in the fast–slow analysis. That is, we use

𝜔 = 𝑐5

𝑐5 +𝐾5
𝑑

(14)

which is the fraction of activated K(Ca) channels in this model. The
fast subsystem (𝑉 and 𝑛) bifurcation diagram is shown in Fig. 7, with
the stationary branch in black and the periodic spiking branch in red.
During bursting oscillations, cER varies from 91 to 102 μM, so we
compute 𝑐 nullclines with these two extreme values of cER (cER enters
the 𝑐 differential equation through the flux term 𝐽ER). These are then
transformed to the 𝜔 coordinate through Eq. (14) and superimposed on
the critical manifold.

At the start of a burst active phase cER is low, 91 μM, and the
nullcline intersects the periodic branch, but not the stable stationary
branch. Since with parameter changes 𝑐 is now a much faster variable
than in the Chay–Keizer model, the trajectory does not follow the
critical manifold as closely, and at the start of the active phase it moves
quickly to the right until it stalls in a spiking state. Now the slow
component becomes important, as cER slowly increases and moves the
nullcline rightward. This moves the trajectory in the same direction,
building up K(Ca) conductance until the voltage no longer reaches the
spike threshold and the trajectory leaves the periodic spiking branch.
From here, it travels quickly to the left and stalls at the intersection of
the nullcline (now with cER=102 μM) with the stable stationary branch
of the critical manifold. From here it drifts slowly leftward as cER slowly
declines and moves the nullcline leftward. The silent phase terminates
when the nullcline moves past the saddle–node bifurcation and the
trajectory once again returns to the periodic branch.

In addition to providing a more accurate shape for the time course
of 𝑐, the phantom bursting mechanism allows for a greater range of
burst periods, and in particular, burst periods of several minutes, like
the one shown in Fig. 5.

The wide range of burst periods is possible because the period is
determined both by the time required for the trajectory to move along a
branch of the critical manifold before it stalls, and the time required for
the nullcline to move so that the trajectory escapes. In the Chay–Keizer
model with an ER, the former reflects the time constant for 𝑐, while
the latter reflects the much larger time constant for cER. The deeper
the intersection of the nullcline with the periodic or stable stationary
branch of the critical manifold, the longer the burst period. Thus, the
burst period can be extended to several minutes. In contrast, if the
nullcline intersects only the middle, unstable, stationary branch, then
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Fig. 8. Burst period varies over a much wider range with a phantom burster than with
a standard burst mechanism. (A, B) There is a substantial change in the plateau fraction,
but not period, when the K(Ca) channel conductance is increased from 𝑔K(Ca) = 250 pS
(left) to 900 pS (right) in the Chay–Keizer model. (C, D) There is a substantial change
in both plateau fraction and period with the same conductance change in the Chay–
Keizer model with an ER. Parameter values for the top and bottom panels are given
in Tables 1 and 2, respectively.

the burst will be driven entirely by changes in 𝑐 (as in Fig. 3) and the
period will be small, just a few seconds.

The enhanced dynamic range of phantom bursting is illustrated in
Fig. 8, where the top panels show bursting produced by the Chay–
Keizer model with a single slow variable, 𝑐, and low and high values of
the K(Ca) conductance (panels A and B, respectively). The increase in
𝑔K(Ca) has a big impact on the plateau fraction, but little impact on the
burst period. In contrast, using the same values for 𝑔K(Ca) in the Chay–
Keizer model with an ER, a phantom burster, there is a big change
in the burst period (panels C and D) because at low values of 𝑔K(Ca)
the nullcline intersects deep into the periodic and stationary branches,
while with high values of 𝑔K(Ca) the intersection is shallow.

By using the same values of 𝑔K(Ca) for both models we somewhat
understate the flexibility provided by phantom bursting. With the
Chay–Keizer model, if 𝑔K(Ca) is reduced much below 250 pS, the system
produces continuous spiking since the nullcline intersects deep into
the periodic branch and there is no second slow variable to move it.
With the phantom burster, 𝑔K(Ca) can continue to be decreased; deeper
intersections just means bursting with longer periods, although at some
point bursting will transition into continuous spiking. Thus, the burst
dynamics are much more flexible with the phantom burster than with
a burster relying on a single slow variable such as Chay–Keizer.

Converting from fast to medium bursting using the dynamic clamp technique

Electrical recordings and Ca2+ measurements in single 𝛽-cells, iso-
lated from islets, typically exhibit very fast oscillations with a period
of a couple of seconds [28,47], and much less often slow oscillations
with a period of several minutes [48,49]. In contrast, bursting in 𝛽-
cells within intact islets typically show either ‘‘medium’’ bursting with
a period of tens of seconds or slow bursting with a period of several
minutes [29]. Why don’t single 𝛽-cells ever exhibit medium bursting?
One hypothesis is that they are not capable of it, either because of
channel noise [50,51] or heterogeneity of individual cells [52] and
require electrical coupling with other 𝛽-cells to do it. Using phantom
bursting models, we predicted that single 𝛽-cells could in fact produce
medium bursting with the addition of an appropriate ionic current.

To test this model prediction, we used the dynamic clamp tech-
nique [47,53]. This allows one to add an artificial current to a single
6

Fig. 9. Adding an appropriate current to a fast bursting cell converts it to a medium
burster. (A) Model prediction. The model cell is initially bursting at a high frequency,
but when the dynamic-clamp current is added (‘‘D-clamp’’) it switches to medium
bursting after a transient. Simulation performed using the original phantom bursting
model [46]. The dynamic clamp parameter values are 𝑔cmp = 12 pS, 𝑉cmp = 100 mV,
𝜏𝑧 = 50 ms. (B) Experimental recording of electrical activity from a 𝛽-cell in which a
dynamic clamp current with conductance of 5 pS is added at the arrow.
Source: This panel reproduced from [46].

cell using the cell’s own membrane potential to calculate the cur-
rent with voltage-dependent conductance. In our test of the model
prediction, we added a current

𝐼cmp = 𝑔cmp𝑧(𝑉 − 𝑉cmp) (15)

where 𝑧 is an activation variable that satisfies the differential equation

𝑑𝑧
𝑑𝑡

=
𝑧∞(𝑉 ) − 𝑧

𝜏𝑧
(16)

and

𝑧∞(𝑉 ) = 1

1 + exp
(

−(22+𝑉 )
7.5

) (17)

which is an increasing Hill function of 𝑉 .
A simulation showing the effect of adding this dynamic-clamp cur-

rent is in Fig. 9A. This uses the original phantom bursting model [46],
in which there are two slow variables, 𝑠1 and 𝑠2. Both are activation
variables of K+ channels, and the activation time constant for the latter
is much larger (by a factor of 120) than that of the former. Initially,
the model cell is bursting at a very high rate, with a period of 2 s.
When the dynamic-clamp current is added the system settles into a
burst pattern with period of 16 s. Thus, the current transformed the
fast burster to a medium burster. This increase in period did not arise
from slow dynamics of the dynamic-clamp current, which had a time
constant of only 50 ms. Rather, the added current unmasked an intrinsic
slow mechanism by stretching the critical manifold, so that the slow
variable nullcline now intersected it on the lower stationary branch
and the upper periodic branch, as in Fig. 7. Changes in the second,
much slower, variable were therefore required to produce a burst
pattern. That is, the bursting that was originally driven by the slow
variable 𝑠 , was transformed into phantom bursting in which changes
1
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in the slower variable 𝑠2 were necessary to escape the silent and active
phases. The result is medium bursting. Experimental tests of this model
prediction reliably showed a similar transition, as illustrated in Fig. 9B.
A similar prediction was made using a later phantom bursting model
(described above) [28]. In both publications, experimental tests adding
the dynamic clamp current suggested by the model reliably resulted in
a transition from fast to medium bursting. These are the only examples
that we know of in which the medium burst pattern often seen in islets
was observed in single 𝛽-cells.

4. The dual oscillator model

The great flexibility in burst period provided by phantom bursting
seemed to explain the perplexing observation that bursting in 𝛽-cells
can be very fast in single cells or islets in the presence of acetylcholine
(just a few seconds), or somewhat slower in islets (tens of seconds), or
very slow in islets and some single cells (several minutes) [26,28,40,
47,48,54]. A burst mechanism involving a single slow variable is just
not flexible enough to account for this. A phantom burster is.

Despite the success of phantom bursting in explaining bursting
in 𝛽-cells, there were data that appeared to defy explanation by the
model. These electrophysiology data, from three different labs, showed
episodes of bursts and cases in which the plateau fraction varied over
time in a rhythmic manner [55–57]. We coined the terms compound
bursting and accordion bursting for these two unusual types of electrical
behavior. Later electrophysiology and Ca2+ imaging data demonstrated
that these strange forms of bursting are not so unusual, and compound
bursting is commonly seen in islet recordings [32,58,59]. Just as with
the slow form of bursting, the episode period, and the period of the
rhythmic modulation of plateau fraction, is similar to the 5–10 min
period of insulin oscillations in the blood [60]; oscillations with that pe-
riod enhance the efficacy of insulin action [61]. These compelling data
suggested that there could be two co-existing oscillators; one oscillator
would produce bursts, and the other would group them together into
episodes or slowly vary the plateau fraction of each burst. The Dual
Oscillator Model (DOM) [32], published in 2004, was a mathematical
realization of that idea. In the DOM, there is an electrical oscillator
based largely on the phantom bursting model of [4], and a separate
glycolytic oscillator based on [62] that produced a slow oscillation in the
ATP/ADP ratio. The oscillations in ATP/ADP affect the cell’s electrical
activity through K(ATP) channels; an increase in ATP/ADP results in a
decrease in 𝑔K(ATP), so oscillations in ATP/ADP result in oscillations in
𝑔K(ATP).

Glycolytic oscillations

The enzyme underlying glycolytic oscillations in the DOM is phos-
phofructokinase (PFK). It was demonstrated by Tornheim and collab-
orators that this enzyme can produce metabolic oscillations in muscle
extracts [63] and Tornheim proposed that the same enzyme, which is
also found in 𝛽-cells, could be responsible for slow oscillations in 𝛽-
cells [64]. The enzyme acts at an early stage of glycolysis to convert
the substrate fructose 6-phosphate (F6P) into fructose 1,6-bisphosphate
(FBP). It is an allosteric enzyme that is inhibited by ATP and stimulated
by its product FBP. The inhibition of PFK by ATP is the classic negative
feedback that limits ATP production. The stimulation by FBP provides
positive feedback to PFK, and is not as ubiquitous in biology. One
important effect of the positive feedback is that it facilitates oscillations
in PFK activity through the substrate depletion mechanism. That is,
the PFK activity becomes so high that it largely depletes the substrate.
This results in a decline in PFK activity until the substrate level builds
back up, at which point another round of FBP production begins with
the subsequent buildup of PFK activity, restarting the cycle. Since the
dominant PFK enzyme in 𝛽-cells is the same isoform as that in muscle,
we used the same differential equations for PFK substrate (F6P) and
7

Fig. 10. Oscillations in the concentration of the glycolytic metabolite FBP, produced
by the glycolytic enzyme PFK. (A) The FBP time course exhibits pulses, with period of
7 min. (B) The F6P-nullcline (black dotted curve) and FBP-nullcline (black solid curve)
shown in the phase plane. They intersect once at an unstable node (blue circle). The
glycolytic oscillation is a limit cycle (red).

product (FBP) that were used in the model for glycolytic oscillations in
muscle developed by Smolen [62]:
𝑑F6P
𝑑𝑡

= 0.3(𝐽GK − 𝐽PFK) (18)

𝑑FBP
𝑑𝑡

= 𝐽PFK − 1
2
𝐽PDH (19)

where 𝐽GK is flux through glucokinase, 𝐽PFK is flux through PFK, and
𝐽PDH is flux through pyruvate dehydrogenase (PDH), assumed to be
proportional to the square root of the FBP concentration:

𝐽PDH = 𝜈PDH
√

FBP∕(1𝜇M) . (20)

The glycolytic model is from [62], and equations for the flux terms and
parameter values are given in [65].

With appropriate parameter values, the substrate and product levels
of PFK oscillate. An example of these glycolytic oscillations is given
in Fig. 10. The top panel shows the FBP time course, with a period
of 7 min. When viewed in the F6P-FBP phase plane (bottom panel),
the trajectory moves along a limit cycle (red). This encircles a single
unstable node formed by the intersection of the F6P-nullcline (black
dotted) and the FBP-nullcline (black solid). The latter has a cubic shape,
and intersections that occur on the middle branch can correspond to
unstable equilibria, as in this case. Intersections occurring on the upper
or lower branches correspond to stable equilibria, and there are no
oscillations. Changes in parameter values can move the nullclines so
that intersections occur on any of the branches and thereby change
stability of the equilibrium.

An important parameter in the system is the glucokinase flux rate,
𝐽GK , which reflects the glucose concentration; higher glucose concen-
trations lead to higher values of 𝐽GK . If 𝐽GK is reduced to a sufficiently
low level the system goes through a subcritical Hopf bifurcation and
oscillations stop. If it is increased to a sufficiently high level then the
system again goes through a subcritical Hopf bifurcation and oscilla-
tions stop. Thus, glycolytic oscillations only occur between lower and
upper threshold values of 𝐽GK [66].

Compound and accordion bursting

It is a long road from FBP production to ATP synthesis, involving the
remainder of glycolysis, followed by the citric acid cycle, and ultimately
oxidative phosphorylation where most of the ATP is produced. In
the original DOM, this complexity is reduced to a single differential
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equation, for the rate of change of the ADP concentration in the cytosol.
This equation was derived by Keizer and Magnus in 1989 [9]:
𝑑ADP
𝑑𝑡

= 1
𝜏𝑎

[

ATP − ADP 𝑒(𝑟+𝛾)(1−𝑐∕𝑟1)
]

(21)

where the input from glycolysis comes through the term 𝛾:

𝛾 =
𝜈𝛾𝐽PDH

𝑘𝛾 + 𝐽PDH
. (22)

In this way, an increase in FBP leads to a decrease in ADP, which has
been converted to ATP. Another variable that enters the ADP differen-
tial equation is the cytosolic Ca2+, 𝑐, reflecting the depolarizing effect
that 𝑐 influx into the mitochondria has on the mitochondrial membrane
potential, reducing the driving force for ATP synthesis [9,67]. The
cytosolic ATP concentration is then determined from the conservation
of adenine nucleotides:

ATP = 𝐴tot − AMP − ADP (23)

where 𝐴tot is the total adenine nucleotide concentration (a parameter),
and AMP (adenosine monophosphate) is treated as in equilibrium with
ATP and ADP:

AMP = ADP2

ATP
. (24)

(With this and the nucleotide conservation equation, Eq. (23), one
only needs a single differential equation for nucleotides. In the Keizer-
Magnus model, a differential equation for ADP was used, and this was
retained in the IOM as Eq. (21).) Finally, the conductance of the K(ATP)
current, 𝑔K(ATP), is an increasing function of ADP and a decreasing
function of ATP, given by the function 𝑜∞(ADP,ATP). Then,

𝑔K(ATP) = �̄�K(ATP)𝑜∞(ADP,ATP). (25)

The mathematical expression of 𝑜∞ and other details including param-
eter values are described in the original DOM publication [32], and are
not replicated here.

The differential equations in the DOM are all given above, but are
gathered together here to aid readability:
𝑑𝑉
𝑑𝑡

= −[𝐼Ca + 𝐼K + 𝐼K(Ca) + 𝐼K(ATP)]∕𝐶𝑚 (26)

𝑑𝑛
𝑑𝑡

=
𝑛∞(𝑉 ) − 𝑛

𝜏𝑛
(27)

𝑑𝑐
𝑑𝑡

= 𝑓𝑐 (𝐽mem + 𝐽ER) (28)
𝑑𝑐ER
𝑑𝑡

= −𝑓ER𝜎𝑣𝐽ER (29)

𝑑F6P
𝑑𝑡

= 0.3(𝐽GK − 𝐽PFK) (30)

𝑑FBP
𝑑𝑡

= 𝐽PFK − 1
2
𝐽PDH (31)

𝑑ADP
𝑑𝑡

= 1
𝜏𝑎

[

ATP − ADP 𝑒(𝑟+𝛾)(1−𝑐∕𝑟1)
]

. (32)

Depending on the parameter values, this model can produce a wide
range of bursting patterns, including the fast and slow oscillations that
the phantom burster can generate, but also the patterns that drove
the development of the model, which are difficult if not impossible
to explain without two oscillators. Fig. 11A shows compound bursting
produced by the DOM, where there are episodes of bursts separated
by long quiescent phases. Each episode is driven by a pulse of FBP
(panel B), which leads to a pulse of ATP. These ATP pulses, generated
through the glyoclytic oscillator, produce the burst episodes through
their action on K(ATP) channels. In contrast, each burst in an episode
is driven by oscillations in the K(Ca) conductance resulting from Ca2+

influx and subsequent removal, as described above for the phantom
bursting model.

If the maximum K(ATP) conductance 𝑔K(ATP) is reduced, accor-
dion bursting is produced (Fig. 11C). In this case, rather than turning
episodes on and off, the oscillations in K(ATP) conductance modulate
8

Fig. 11. Compound and accordion bursting produced by the DOM. (A) During
compound bursting there are episodes of bursts followed by long periods of quiescence.
(B) Intrinsic metabolic oscillations package the bursts into episodes. Each pulse of FBP
produces an episode of bursts. (C) A reduction in the K(ATP) conductance converts
compound bursting into accordion bursting, in which there is a slow rhythm in the
burst plateau fraction.

Fig. 12. (A) Illustration of the DOM. The top bar represents the glycolytic oscillator,
while the bottom represents the electrical oscillator. Open sections indicate a low
equilibrium state, hatched sections indicate an oscillatory state, and filled sections
indicate a high equilibrium state. The small left arrow indicates a glucose level that
produces fast bursting. The larger right arrow is a higher glucose level that produces
slow bursting. Movement from one to the other, across the GO threshold, is a regime
change as shown in Fig. 13. (B) The GO bar is left-shifted relative to the EO bar to
illustrate the transitions that occur in Fig. 16 as the glucose level is slowly increased.
The small leftmost arrow indicates a low glucose level, producing the subthreshold
metabolic oscillations that occur during the first 30 min of Fig. 16. The large rightmost
large arrow indicates a glucose level past the top threshold for the GO and producing
the slow bursting with passive metabolic oscillations that occur during the last 20 min
of Fig. 16.

the burst plateau fraction in a rhythmic manner. Importantly, the
plateau fraction modulatory rhythm is periodic, as was reported in
the experimental studies that quantified this burst pattern in islet
𝛽-cells [55,56].

Regime changes are predicted by the DOM

The name ‘‘Dual Oscillator Model’’ came from the coexistence of
electrical and glycolytic oscillators in the model. The electrical oscil-
lator produces fast bursting, while the glycolytic oscillator produces
the slow rhythm underlying slow, compound, or accordion bursting.
Each oscillator has lower and upper thresholds. Thus, a low glucose
level could position the system below the lower threshold, while a high
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Fig. 13. Regime changes occur when the glucose concentration is increased. (A, B)
At the first glucose level the electrical oscillator in the DOM is on and the glycolytic
oscillator is off, so 𝑐 oscillations are due to fast bursting. When glucose is increased
past the upper threshold for the EO and lower threshold for the GO, much slower
and larger 𝑐 oscillations are produced, driven by the GO. When glucose is increased
past the upper GO threshold, this slow oscillator turns off and the 𝑐 concentration is
tonically elevated while the membrane potential spikes continuously. (C) Experimental
Ca2+ recording using the fluorescence dye fura-2. Regime changes occur when the
glucose concentration is increased from 9 to 13 mM and later to 25 mM.
Source: This panel reproduced from [68].

level could position it above the upper threshold, and in either case
there would be no oscillations. The oscillator is active only between the
two thresholds. This is a very useful organizational structure that helps
one interpret the DOM in an intuitive way. All the possible bursting
behaviors can be understood by the ordering of the thresholds and
where the glucose level is relative to the thresholds [68]. For example,
it is possible for the glucose level to be above the lower threshold for
the electrical oscillator, but below that for the glycolytic oscillator,
with the result that the system produces fast bursting. It should then
be possible to transition to slow bursting by raising the glucose level
above the lower threshold for the glycolytic oscillator. This is illustrated
in Fig. 12A. We call this transition from an electrical to a glycolytic
oscillation a regime change. This is strong additional evidence for the
coexistence of two oscillators in 𝛽-cells. Other behaviors can occur
when the thresholds are in different relative locations, as in Fig. 12B.

Regime changes were first seen in [69], though not recognized
as such, and later in experiments performed by the Satin lab. The
DOM was used to explore conditions for which they could happen.
An example of a regime change produced by the DOM is illustrated
in Fig. 13A,B, which shows the intracellular Ca2+ concentration and
FBP at three different glucose levels. At the initial glucose level (rep-
resented by the glucokinase parameter 𝐽GK) the glycolytic oscillator is
inactive; the FBP concentration is at a constant low level. The glucose
concentration is increased at time t=10 min, putting it above the lower
threshold for the glycolytic oscillator, so the glycolytic oscillator turns
on, and each pulse of FBP produces a pulse of ATP that closes K(ATP)
channels and triggers a pulse of electrical activity that ends following
the FBP pulse. The result is a slow bursting pattern. Importantly, this
9

new pattern is characterized by Ca2+ pulses that are both longer-
lasting and greater in amplitude than the original fast bursting, so
the insulin secretion would be much greater. Increasing the glucose
concentration further, above the upper threshold for both oscillators, is
another regime change and results in a continuous spiking pattern with
elevated, but non-oscillatory FBP. (There are small transient oscillations
in FBP since 𝐽GK is near the upper threshold Hopf bifurcation.)

In the experimental studies of regime change in mouse islets, the
fluorescent dye fura-2 was used to monitor the intracellular Ca2+

concentration of islet 𝛽-cells [68]. We found 11 examples of islets
exhibiting regime changes when glucose was increased, one of which
is shown in Fig. 13C. As shown in model simulations, the Ca2+ levels
of the slow oscillations that occurred following the first increase in
glucose were both wider and had greater amplitude than the oscil-
lations prior to the regime change. This is a compelling example of
how the underlying simplicity of the DOM, with two-semi-independent
oscillators, facilitated our understanding of a behavior that would have
been perplexing without the aid of the model.

This simple picture was soon challenged, however, by data from the
Kennedy lab in which metabolic oscillations in islets were terminated
when the cell membrane was hyperpolarized by the K(ATP) channel ag-
onist diazoxide [70]. This was interpreted as indicating that metabolic
oscillations are driven by the Ca2+ oscillations that occur when the
cell is bursting with no need for a glycolytic oscillator. This had been
proposed previously by Keizer and Magnus [9], who hypothesized that
Ca2+ flux across the mitochondrial inner membrane depolarizes the
membrane and thereby reduces ATP synthesis. This mechanism was
incorporated into the phantom burster [4] and inherited by the DOM
as Eq. (21), where it contributes to fast bursting when the glycolytic
oscillator is not active. Another mechanism that can produce very
similar results is the consumption of ATP by Ca2+ATPase pumps that
remove Ca2+ from the cytosol [71].

We showed that the DOM could provide an alternate explanation:
membrane hyperpolarization closes Ca2+ channels, which lowers 𝑐.
Because of this, the Ca2+ pumps are less active, so there is less ATP
hydrolysis. Therefore, the ATP concentration rises and inhibits PFK,
shutting off the glycolytic oscillations. The validity of this explanation
was reinforced when we demonstrated that the metabolic oscillations
could be recovered by depolarizing the cell with KCl in the presence of
diazoxide [72]. This increases 𝑐, but without oscillations. Clearly then,
metabolic oscillations can occur without Ca2+ oscillations. This result is
not compatible with mechanisms in which metabolic oscillations occur
only secondary to Ca2+ oscillations.

5. The integrated oscillator model

5.1. Measurement of FBP leads to more changes in the model

Another challenge arose later when our lab developed a FRET
biosensor to detect oscillations in FBP, called PKAR (Pyruvate Kinase
Activity Reporter) [74]. While use of the probe in islets clearly showed
slow oscillations in PKAR (and thus FBP), the shape of the oscillations
did not match those of the FBP oscillations in the DOM [73]. In
particular, rather than the pulses of FBP shown in Figs. 11 and 13, the
PKAR data indicated that FBP in islets has a sawtooth shape during
bursting, declining during the active phase and rising during the silent
phase (Fig. 14). This could not be explained by the DOM. The correct
FBP pattern was achieved by including Ca2+-dependent activation of
pyruvate dehydrogenase (PDH) [75] into the model. This enzyme is
downstream of PFK, and has been shown to be allosterically activated
by Ca2+ [76]. In the model, then, we modified Eq. (20) to

𝐽PDH = 𝜈PDH𝑠∞(𝑐m)
√

FBP∕(1𝜇M) (33)

where

𝑠∞(𝑐m) =
𝑐m (34)
𝐾PDH + 𝑐m
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Fig. 14. Simultaneous recording of the membrane potential from a 𝛽-cell within an
islet (Vm) in gray and fluorescence from the pyruvate kinase activity reporter (PKAR)
in blue. PKAR is a Förster resonance energy transfer (FRET) biosensor that reports the
FBP concentration in islet cells.
Source: Reproduced from [73].

and cm is the free Ca2+ concentration in the mitochondria. This Ca2+

concentration is given by
𝑑𝑐m
𝑑𝑡

= 𝑓𝑐𝜎m𝐽m (35)

where 𝐽m is the net Ca2+ flux into the mitochondria and the parameter
𝜎m is the ratio of cytosolic volume to mitochondrial volume. The flux
term reflects Ca2+ pumping into the mitochondria by uniporters and
efflux from mitochondria through Na+-Ca2+ exchangers:

𝐽m = 𝑘uni𝑐 − 𝑘NaCa(𝑐m − 𝑐) . (36)

The sawtooth shape of FBP, and specifically the decline of FBP
during the active phase, comes about because high Ca2+ activates
PDH, which draws FBP out of the cytosol into the mitochondria. This
enhances ATP production in the mitochondria at the same time as it
suppresses glycolytic oscillations by removing the positive feedback of
FBP onto PFK.

With this addition to the model, the semi-independence of the
electrical and metabolic oscillators was gone. Now, Ca2+ influences
metabolism both through production and consumption of ATP, and ATP
influences electrical activity and thus the Ca2+ concentrations through
K(ATP) channels. In the revised model, Ca2+ can both stimulate PFK
by increasing ATP consumption, which relieves the inhibition of PFK
by ATP, and inhibit PFK by removing the stimulation of PFK by FBP.
As a consequence, the two oscillators are closely and bidirectionally
linked, motivating the name Integrated Oscillator Model (IOM) [34].

The IOM exhibits both passive and active metabolic oscillations

A key new feature of the IOM is that it possesses two co-existing
mechanisms for slow metabolic oscillations. In one mechanism,
metabolic oscillations are driven by oscillations in glycolysis, and are
referred to as active metabolic oscillations (AMOs). This is the type
of metabolic oscillation that is responsible for slow, compound, and
accordion bursting in the DOM. The other type of metabolic oscillation,
passive metabolic oscillations (PMOs), is due to the effects of Ca2+ on
ATP consumption. With this mechanism, the Ca2+ concentration is
elevated during a burst active phase, hydrolyzing ATP to power the
Ca2+ pumps. When the ATP/ADP ratio drops to a sufficiently low level,
the K(ATP) conductance becomes sufficiently large to turn off spiking
and a silent phase begins. During this phase the Ca2+ concentration is
low, reducing the ATP hydrolysis by pumps, causing the ATP/ADP ratio
to build up and decreasing the K(ATP) conductance. Eventually, this
conductance becomes small enough that spiking begins again, initiating
a new burst active phase. Therefore, the Ca2+-driven oscillations in
ATP/ADP act very much as cytosolic Ca2+ did in the Chay–Keizer to
drive bursting (in this case, slow bursting), but now through the K(ATP)
current rather than the K(Ca) current. This is illustrated in Fig. 15,
10
Fig. 15. Slow bursting with passive metabolic oscillations produced by the IOM. (A,
B) Voltage and Ca2+ concentration profiles exhibit 4-min oscillations. These are the
variables most readily measured in experiments. (C) The FBP level falls during a burst
active phase and rises during a silent phase, as has been observed experimentally using
the PKAR sensor [73]. (D) The ATP/ADP ratio has a sawtooth appearance, as has been
observed experimentally using the fluorescent biosensor Perceval-HR [73,77,78].

where slow bursting with a period of approximately 4 min is shown. As
in experiments using the PKAR FRET sensor to measure the FBP level,
the FBP concentration declines during a burst active phase and rises
during a silent phase (Fig. 14 and [73,74]). The ATP/ADP ratio, which
sets the K(ATP) channel conductance, also has a sawtooth shape, as
observed in experiments using the Perceval-HR biosensor to measure
ATP/ADP [73,77,78].

The mechanism described above of PMO mode is very similar to
the mechanism of slow oscillations in the phantom burster, and in fact,
PMOs are a form of phantom bursting [79]. Thus, although the phan-
tom mechanism appeared at first to be superseded by the glycolytic
mechanism of the DOM, it was reborn in the IOM as a competitor to
AMOs.

Since there are two mechanisms for metabolic oscillations in the
IOM, it is natural to ask which occurs in the actual 𝛽-cells. There is
compelling evidence that both do. In the experiments shown in [73–
75], FBP and ATP/ADP levels had a sawtooth shape during slow
bursting oscillations. This is an indicator of PMOs. However, metabolic
oscillations have also been observed in situations in which the Ca2+

concentration was not oscillating [72,80], so the metabolic oscillations
that occurred in these conditions must be AMOs. Also, we know of no
other way to explain compound and accordion bursting [32,55,56] than
as the electrical ramifications of AMOs acting on K(ATP) channels [32,
65].

Why do beta cells have both AMOs and PMOs?

Another natural question is what benefit having two types of slow
oscillations provides. A clue can be found by considering oscillations in
basal (fasting) glucose.

All of the behaviors that we have discussed thus far occur when the
glucose concentration is at a high enough level that the cell produces
electrical activity. These are often referred to as stimulatory glucose levels
since this is the case when the insulin secretion is greatest. However,
insulin is also secreted when the glucose level is low, at fasting levels
below the threshold for electrical activity. With these basal glucose
levels the insulin secretion is much less, but measurements made in
vivo at basal glucose levels from monkeys [81], humans [82,83], and
dogs [84] and in isolated islets from ob/ob mice [85] and humans [86]
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show pulsatility in the insulin level with the same period as the large
amplitude pulses in high glucose. We have hypothesized that Ca2+ does
not rise high enough in basal glucose to drive oscillations by feedback
on any ion channels and that therefore the insulin secretion oscillations
are due to AMOs [87]. Under this scenario, the metabolic oscillations
cause pulsatile insulin secretion by modulating the trafficking of insulin
vesicles to the plasma membrane. The secretion is at a low level since
the Ca2+ concentration in the cell is low, but plausibly it can still
oscillate by this mechanism. Metabolic modulation of insulin secretion
is well established in stimulatory glucose, where it accounts for about
half of insulin secretion, and is called the glucose amplification fac-
tor [88,89]. The hypothesis that it underlies basal secretion oscillations
remains to be tested.

The numerical simulation with the IOM in Fig. 16 illustrates a way
in which AMOs and PMOs could work together, with AMOs providing
secretion oscillations in basal glucose, and PMOs taking over in stim-
ulatory glucose. The glucose concentration is initially held constant at
a basal level of 3 mM, during which AMOs are generated. These are
characterized by pulses of FBP and ATP/ADP and small oscillations
in the membrane potential that occur due to the actions of ATP/ADP
on current through K(ATP) channels. As the glucose concentration is
slowly ramped up the model cell begins to burst. These bursts are
driven by PMOs, characterized by sawtooth time courses in FBP and
ATP/ADP. The switch to PMOs is needed here because the AMOs are
prevented by a combination of high glucose carrying the glycolytic
oscillator across its upper threshold and by PDH channeling Ca2+

away from PFK into the mitochondria. With the two oscillator modes
working together, there would be pulsatile insulin secretion due to
the oscillations over the entire physiological range of glucose due to
metabolism acting on the glucose amplification factor. The insulin
pulses would be of much larger amplitude once bursting commences
since the Ca2+ concentration would be elevated during each burst and
trigger exocytosis of insulin-containing granules.

The scenario above is an example of one of the many possible
behaviors that can occur when the GO and EO thresholds are in
different locations relative to one another. In the case of Fig. 16, the GO
bottom threshold is at a lower glucose level than the bottom threshold
for the EO (Fig. 12B), so oscillations in metabolism are possible at a low
level of glucose (leftmost arrow). The higher glucose level that produces
bursting is above the top threshold for the GO, but still below the top
threshold for the EO (rightmost arrow). The result is slow bursting with
sawtooth patterns in the FBP and ATP/ADP time courses, characteristic
of PMOs (Fig. 16).

6. Chay-Keizer looks at 40

In the 40 years since its publication, the Chay–Keizer model has had
an outsized impact on the field of islet biology. As a model for bursting
in 𝛽-cells it is incomplete, but it correctly identifies the driving mech-
anism of activity-dependent Ca2+ feedback via K(Ca) ion channels. In
addition to the IOM and models leading up to it, the Chay–Keizer model
spawned a host of other models postulating different negative feedback
variables. These include Ca2+-dependent inactivation of an inward
current [90], Ca2+ inhibition of oxidative phosphorylation and its effect
on ATP synthesis, which affects K(ATP) channels [9,42,67], voltage-
dependent inactivation of Ca2+ channels [10], the slow variation of
the ER-Ca2+ concentration acting on the membrane through its effect
on cytosolic Ca2+ and K(Ca) channels [6] or store operated inward
current (SOC) [91], the slow variation of intracellular Na+ and the
consequent activation of the electrogenic Na+-K+ exchanger [7], hy-
drolysis of ATP by Ca2+ pumps and the subsequent decline in ATP/ADP
that opens K(ATP) channels [44,71], or a combination of mechanisms
including K(ATP) channels and electrogenic transporter currents at
different glucose levels [5]. Only the hypothesis of Tornheim, that there
is an endogenous glycolytic oscillator underlying bursting [64], broke
entirely from the Chay–Keizer mold. The DOM and IOM combined
11
Fig. 16. Ramping from basal to stimulatory glucose levels converts AMOs to PMOs.
(A) The glucose concentration begins at a steady basal level and is then ramped up to
stimulatory values. (B) The voltage initially exhibits small subthreshold oscillations, and
later switches to slow bursting when the K(ATP) conductance is sufficiently small. (C)
The FBP time course is pulsatile when glucose is at a substimulatory level and later has
a sawtooth shape at stimulatory glucose levels. (D) The ATP/ADP ratio has a pulsatile
appearance when the metabolic oscillations are active, and a sawtooth appearance when
they are passive.

the idea of Ca2+-dependent inhibition with an endogenous glycolytic
oscillator, and so built on pioneering work from both Chay–Keizer and
Tornheim.

Amidst all this exploration of alternative negative feedback mecha-
nisms, the Chay–Keizer paradigm, first explicated by Rinzel, in which
square-wave bursting arises from bistability between silent and spiking
states has shown remarkable durability. We suspect that this is really
how it works and is not just lack of imagination on the part of theorists
because other burst patterns that look similar in several pituitary cell
types appear not to involve bistability and have different predicted
mathematical properties [92,93]. Some of these predictions have been
tested experimentally [94], and some remain to be tested.

The main revisions to the paradigm have been the realization that
accounting for the diversity of oscillation patterns exhibited by 𝛽-cells
requires additional mechanisms. Two or more slow variables (phantom
bursting) are needed to give a wide range of periods. Two other current
models that can produce a wide range of periods also turn out to be
phantom bursters [5,7]. To account for compound and subthreshold
oscillations, a second oscillator has to be added (DOM or IOM).

This leaves us with the question, why does it have to be so compli-
cated? We have proposed that two kinds of slow oscillations (AMOs and
PMOs) are needed to seamlessly coordinate pulsatile insulin secretion
in basal and stimulatory glucose [87]. This prediction needs to be tested
experimentally, and we have begun to do so. This is the apotheosis of
the unification of Chay–Keizer and Tornheim. Pure ionic models cannot
produce oscillations in basal glucose, and pure metabolic models can
only produce minuscule oscillations of calcium unless the threshold for
electrical bursting is crossed.

The slow electrical oscillations have clear physiological relevance
because they drive pulsatile insulin secretion, which enhances the effi-
cacy of insulin on its target tissues, but the role of the fast oscillations
is less obvious. We conjecture that they are part of the modulation of
beta-cell electrical activity by neuronal and hormonal signals (such as
acetylcholine and glucagon-like peptide 1), which act on small ionic
currents and the ER to increase oscillation frequency and raise mean
calcium. This is also where the K(Ca) channel, otherwise dispensable,
takes center stage. The prototype example of this is a model of the



Mathematical Biosciences 365 (2023) 109085R. Bertram et al.
effects of acetylcholine [95], which we realized only years later was
a phantom burster.

The Chay–Keizer model has also been the focus of developments
aimed at understanding the different forms of bursting from a purely
mathematical perspective. It was one of the models used in the pioneer-
ing fast/slow analysis of bursting [15,22,23] and has continued to be
employed in mathematical studies of bursting [96–98].

The discussion of 𝛽-cell models in this article assumes that all 𝛽-cells
in the islet are in synchrony, so that the model describes a represen-
tative cell in a synchronized population of cells. This approximation
is both useful and valid for most questions regarding islet activity;
synchrony is produced through gap junctions that provide electrical
coupling among 𝛽-cells, and Ca2+ measurements from different regions
of an islet showed synchronized oscillations [27]. However, more re-
cent studies showed the presence of Ca2+ waves across an islet [99,
100], demonstrating some degree of spatial nonuniformity of activity
on a shorter time scale. Also, there has been recent experimental
work indicating the presence of islet ‘‘hub cells’’ that play an outsized
role in the generation of bursting activity across the islet [101], but
this remains a topic of debate that some argue against [102–104].
Another interesting question is that of how the hundreds of thousands
of islet oscillators within a pancreas are coordinated, a question that
has been the focus of some mathematical model work [105] and in
vitro testing of hypotheses [106–109]. Finally, the Chay–Keizer model
and the IOM are models for 𝛽-cells in mouse islets, where most of the
experimental data exists. Some modeling work has also been done for
human islets [11,12,110], which have some different ionic currents and
potentially different burst mechanisms.

Looking back over 40 years, then, it is evident that the Chay–
Keizer model has had a lasting influence on the way that the scientific
community understands bursting oscillations, and opened the door for
further exploration of the burst mechanism in pancreatic 𝛽-cells. The
IOM is the most advanced descendent, having been developed over
more than two decades of iteration between experimental and math-
ematical developments. The authors hope that further developments to
the IOM will continue into the future, further extending the legacy of
the Chay–Keizer model.
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