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Insulin-secretingβ-cells, located within the pancreatic islets of Langerhans, are
excitable cells that produce regular bursts of action potentials when stimulated by
glucose. This system has been the focus ofmathematical investigation for two
decades, spawning an array of mathematical models. Recently, a new class of mod-
els has been introduced called ‘phantom bursters’ [Bertramet al. (2000)Biophys. J.
79, 2880–2892], which accounts for the wide range of burst frequencies exhibited
by islets via the interaction of more than one slow process. Here, we describe one
implementation of the phantom bursting mechanism in which intracellular Ca2+
controls the oscillations through both directand indirect negative feedback path-
ways. We show how the model dynamics can be understood through an extension
of the fast/slow analysis that is typically employed for bursting oscillations. From
this perspective, the model makes use of multiple degrees of freedom to generate
the full range of bursting oscillations exhibited byβ-cells. The model also accounts
for a wide range of experimental phenomena, including the ubiquitous triphasic
response to the step elevation of glucose and responses to perturbations of internal
Ca2+ stores. Although it is not presently a complete model of allβ-cell properties,
it demonstrates the design principles that we anticipate will underlie future progress
in β-cell modeling.
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1. INTRODUCTION

Pancreaticβ-cells are located in cell clusters within the pancreas called the islets
of Langerhans. These micro-organs monitor the glucose concentration in the blood,
and secrete the hormone insulin in response to elevated glucose levels. Since
insulin is necessary for the uptake of glucose by other cells in the body, the proper
functioning ofβ-cells is crucial for glucose homeostasis. Malfunctioningβ-cells
can lead to type II diabetes (Langet al., 1981).

Both the average level and temporal pattern of insulin secretion are important for
proper glucose homeostasis (Matthewset al., 1983). In vitro andin vivo data show
that insulin secretion is oscillatory with period of several minutes (Chou and Ipp,
1990; Longoet al., 1991; O’Mearaet al., 1993), andin vitro these oscillations have
been shown to be in-phase with oscillations in the free cytosolic Ca2+ concentration
(Bergstenet al., 1994; Bergsten, 1995). It has been established in both singleβ-
cells and intact islets (Santos et al., 1991; Zhang et al., 2003) that these Ca2+
oscillations reflect a bursting pattern in theβ-cell electrical activity. Electrical
bursting, which consists of periodic active phases of cell firing followed by silent
phases of hyperpolarization, was first detectedin vitro in mouse islets byDean
and Mathews(1970) andhas been confirmedin vivo (Sánchez-Andr´eset al., 1995;
Valdeolmilloset al., 1996).

One of the striking features of bursting in islets and isolatedβ-cells is the hetero-
geneity of periods, which range over two orders of magnitude, from a few seconds
to a few minutes. We divide these oscillations into three classes. ‘Fast burst-
ing’ has a period between 2 and 5 s. These oscillations are often observed in
single cells (Kinard et al., 1999; Zhanget al., 2003) and in islets when the neu-
rotransmitter acetylcholine is present (along with a stimulatory concentration of
glucose) in the bath (Cook et al., 1981; Bertramet al., 1995; Bordin et al., 1995).
‘Medium bursting’ oscillations have a period ranging from 10 to 60 s. These are
typically observed in islets with stimulatory glucose concentrations. ‘Slow burst-
ing’ oscillations have a period ranging from 2 to 4 min and have been observed in
both single cells (Ashcroft et al., 1984) and islets (Valdeolmillos et al., 1996; Liu
et al., 1998). Medium bursting can be converted to slow bursting by application
of epinephrine (Cook and Perara, 1982), or amino acids (Martı́n and Soria, 1995).
Note that what wecall ‘medium bursting’ is sometimes called ‘fast bursting’ by
others.

Early mathematical models ofβ-cells were constructed to describe medium burst-
ing, the type first and most often observed in islets. The first Hodgkin–Huxley type
model for β-cells was developed byChayand Keizer(1983). It was based on a
hypothesis of Atwater and Rojas (Atwateret al., 1980) that slow negative feedback
by cytosolic Ca2+ (c) acting on Ca2+-activated K+ (K(Ca)) channels drives burst-
ing. However, subsequent Ca2+ imaging data seemed to indicate thatc changes too
rapidly to account for medium bursting (Santos et al., 1991). Laterβ-cell models
differed largely in the slow process postulated to drive bursting. These included
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voltage-dependent inactivation of a Ca2+ current (Keizer and Smolen, 1991), and
oscillations in nucleotide concentrations (Keizer and Magnus, 1989; Smolenand
Keizer, 1992).

The first models to explicitly address the variability ofβ-cell oscillations were
proposed by Chay. The main mechanism for oscillations was variation in the Ca2+
concentration in the endoplasmic reticulum (ER), which directly or indirectly mod-
ulates one or more Ca2+-dependent channels (Chay, 1996, 1997). Here we analyze
in detail how the ER exerts its effects using our recently proposed phantom bursting
model (PBM).

The PBM isa general paradigm for temporal plasticity in bursting inβ-cells,
in which bursting is driven by the interaction of two slow variables with disparate
time constants (Bertram et al., 2000). The original implementation featured two
generic slow variables,s1 ands2, with time constants of 1 s and 2 min, respectively.
Depending on the conductancegs,1 of thes1 current, the PBM can produce bursting
with periods ranging from a few seconds to a few minutes. Whengs,1 is large, the
bursting that results is fast, driven entirely bys1. Whengs,1 is small,s1 has little
influence, and the bursting that results is driven bys2 and is slow. At intermediate
conductance values boths1 ands2 contribute, yielding medium bursting. We call
this latter case ‘phantom bursting’, since there is no single slow process with a
time constant similar to the burst period; the bursting is a ‘phantom’ effect of the
interaction of two slow variables with disparate time constants.

Phantom bursting is a dynamic concept and is not tied to a specific biophysical
implementation. From a biological perspective, however, it is desirable to identify
potential slow variables and to understand how these might interact to produce the
range of bursting oscillations observed inβ-cells. In this study, we show how three
plausible slow processes can interact to drive bursting with the full range of peri-
ods exhibited byβ-cells. These processes are the cytosolic Ca2+ concentration,
the ER Ca2+ concentration, and the ADP/ATP ratio (ADP= adenosine diphos-
phate, ATP= adenosine triphosphate). We use the model to interpret the results
of variousin vitro experiments and identify data that are not yet reproduced by the
model.

We begin with a description of a simple Chay–Keizer-like model with a single
slow variable, the cytosolic Ca2+ concentration. Because Ca2+ changes only mod-
erately slowly this model produces fast bursting and is limited to a small range
of burst frequencies. We then add a second slow variable, the Ca2+ concentration
in the ER, which varies more slowly than cytosolic Ca2+. Usingan extension of
the fast/slow analysis pioneered byRinzel (1985), we demonstrate how the two
slow variables interact to produce fast, medium, or slow bursting. Finally, we use
the model to interpret the conversion of medium to fast bursting that occurs in the
presence of a muscarinic agonist.

The geometrical fast/slow analysis suggests an additional degree of freedom that
can be utilized to increase further the richness of the bursting dynamics. We extend
the model in this direction, introducing the ADP/ATP nucleotide ratio as a third
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slow variable. This extension confers greater robustness on the model, especially
for slow bursting. Additionally, the redundancy between the two slowest variables
allows the model to account in large measure for data showing that slow bursting
persists in the presence of an ER Ca2+ pump blocking agent (Liu et al., 1995),
even when most of the ATP-sensitive K+ channels are blocked (Fridlyand et al.,
2003a). Finally, the presence of a slow ER and a slow nucleotide ratio allows the
model to reproduce the characteristic triphasic response to a step increase in the
external glucose concentration (Meissner and Atwater, 1976). The various models
described in the text and their abilities to reproduce experimental observations are
summarized inTable 4in the Discussion section.

2. BURSTING WITH A SINGLE SLOW VARIABLE

2.1. The basic model. The basic model, which is essentially equivalent to the
Chay–Keizer model (Chayand Keizer, 1983), consists of a Ca2+ current, ICa, a
delayed rectifier K+ current,IK, a Ca2+-dependent K+ current,IK(Ca), and anucleo-
tide-sensitive K+ current,IK(ATP). In thebasic model, the ratio ADP/ATP is con-
stant, so the conductancegK(ATP) is also constant. The differential equations for
membranepotential, V , delayed rectifier activation,n, and cytosolic free Ca2+
concentration,c, are asfollows:

dV

dt
= −[ICa + IK + IK(Ca) + IK(ATP)]/Cm (1)

dn

dt
= [n∞(V ) − n]/τn (2)

dc

dt
= fcytJmem, (3)

whereCm is the membrane capacitance,τn is the activation time constant for the
delayed rectifier channel,n∞(V ) is the steady state function for the activation vari-
ablen, and Jmem is the Ca2+ flux through the plasma membrane. Sincec repre-
sents the free Ca2+ concentration, we multiplyJmem by the fraction of free to total
Ca2+, fcyt.

Expressions for the ionic currents are as follows:

ICa = gCam∞(V )(V − VCa) (4)

IK = gKn(V − VK) (5)

IK(Ca) = gK(Ca)ω(V − VK) (6)

IK(ATP) = gK(ATP)(V − VK). (7)
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Table 1. Parameter values for the basic model.

Parameter Value Parameter Value

gCa 1200 pS gK 3000 pS
gK(Ca) 300 pS gK(ATP) 230 pS
VCa 25 mV VK −75 mV
Cm 5300 fF α 4.5 × 10−6 fA−1 µM ms−1

τn 16 ms fcyt 0.01
kPMCA 0.2 ms−1 K D 0.3 µM
vn −16 mV sn 5 mV
vm −20 mV sm 12 mV

The conductance values and reversal potentials, along with other parameters,
are listed inTable 1. The steady state activation functions have an increasing
dependence on voltage and saturate at positive voltages:

m∞(V ) = [1 + e(vm−V )/sm ]−1 (8)

n∞(V ) = [1 + e(vn−V )/sn ]−1. (9)

Since the gating of the Ca2+ channel is much faster than the gating of the K+
channels, we assume rapid equilibrium and incorporatem∞(V ) directly into ICa.
The variableω is the fraction of K(Ca) channels activated by cytosolic Ca2+:

ω = c5

c5 + k5
D

, (10)

wherekD is the dissociation constant for Ca2+ binding to the channel. The value
of the exponent is not critical, other values could be used. Finally, the flux of Ca2+
through the membrane is

Jmem = −(α ICa + kPMCAc), (11)

whereα converts units of current to units of flux, andkPMCAc is the flux through
the plasma membrane Ca2+ ATPase pumps.

2.2. Fast/slow analysis of bursting. The behavior of thebasic model is shown in
Fig. 1. Bursts ofaction potentials are generated on top of depolarized plateaus, fol-
lowed by membrane hyperpolarization. The burst period is 2 s [Fig. 1(a)]. Action
potentials are produced by the interaction of the ‘fast’ currentsICa and IK, while
the slow rhythm that packages impulses into bursts is generated by oscillations
in IK(Ca). During the active spiking phase the cytosolic Ca2+ concentration rises
[Fig. 1(b)], increasing the fraction of activated K(Ca) channelsω (not shown), thus
increasing the K(Ca) conductance [Fig. 1(c)]. SinceIK(Ca) is a hyperpolarizing
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Figure 1. Bursting generated by the basic model, withgK(Ca) = 300 pS. (a) Impulses ride
on plateaus, with burst period of 2 s. (b) Cytosolic Ca2+ concentration rises during active
phases and falls during silent phases. (c) The activity-dependent oscillations inc produce
oscillations in the conductance of the K(Ca) channel, driving the bursting.

current, whengK(Ca) rises to a sufficiently high level the spiking terminates and
the cell enters the hyperpolarized silent phase. During this phasec declines due to
pumping of Ca2+ out of the cell, so the K(Ca) conductance declines. Eventually
IK(Ca) is small enough to allow the cell to re-enter the spiking phase, and the cycle
begins anew.

Another way to view the dynamics of bursting is through a fast/slow analysis
(Rinzel, 1985), treating the slow variable,c, as a parameter of the subsystem of
fast variables (V andn). A bifurcation digram for this fast subsystem is shown in
Fig. 2 with ω [equation (10)] as the bifurcation parameter. The variablec could
be used as the bifurcation parameter, but the dynamics are clearer withω because
total K(Ca) conductance is linear inω. Thebifurcation diagram and trajectories
were generated with the program XPPAUT (Ermentrout, 2002).

For large values ofω the fast subsystem is at rest at a hyperpolarized voltage.
These stable rest states make up the bottom branch of thez-shaped slow manifold
(‘ z-curve’) in Fig. 2. The lower branch turns and becomes unstable at a saddle
node bifurcation, and then turns again at another saddle node bifurcation. The
stationary branch regains stability forω near 0 at a Hopf bifurcation. The branch of
periodic solutions emerging from the Hopf bifurcation represents action potentials
(both minimum and maximumV are indicated). It terminates at an infinite-period
homoclinic bifurcation.

We now think of ω not as a parameter, but as a function of the slowly changing
variablec, and superimpose on the bifurcation diagram thec nullcline, transformed
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Figure 2. Fast/slow analysis of bursting with the basic model. Heavy solid curves repre-
sent stable branches, the light dashed curve represents an unstable branch, and the heavy
dashed curve represents thec nullcline transformed according to equation (10) (the ‘ω null-
cline’). The lower saddle node bifurcation (circle) terminates the silent phase of bursting
and the homoclinic bifurcation (triangle) terminates the periodic spiking branch. The burst
trajectory is superimposed.

according to equation (10). We refer to this as the ‘ω nullcline’. Below theω

nullcline the trajectory moves to the left, and above the nullcline it moves to the
right. The superimposed burst trajectory follows along the bottom branch of the
z-curve during the silent phase and along the periodic branch during the active
phase. The spike rate is reduced as the trajectory approaches the homoclinic orbit
at the end of the periodic branch, and the active phase ends when the trajectory
falls below the middle branch of thez-curve.

If the nullcline does not intersect either the periodic branch or the bottom station-
ary branch, then bursting is produced. In the limit as the speed of the slow variable
goes to zero, there is a transition from bursting to continuous spiking when the
nullcline intersects the periodic branch (Terman, 1992). Here, however,c is not
very slow, so theintersection must occur deeper into the periodic branch for the
transition to occur.

With this basic model, the burst period depends on two things: the speed of the
single slow variablec, and the distance thatc (or ω) travels as it cycles between
active and silent phases. The speed ofc can be adjusted with the parameterfcyt;
reducing fcyt to 0.0005 reduces the speed ofc and increases the burst period to
nearly 20 s, 10 times greater than withfcyt = 0.01. With this reduction in the
fraction of free Ca2+, the slower time course ofc has a sawtooth appearance.
During the active phasec slowly rises and during the silent phase it slowly falls
(Fig. 3). The Chay–Keizer model (Chay and Keizer, 1983) predicted such a
sawtooth timecourse, but subsequent fluorescence recordings showed that Ca2+
typically rises quickly and equilibrates early in the active phase (Santos et al.,
1991). Thus, although reducing the speed ofc succeeds in converting fast bursting
to medium bursting, the resultingc timecourse is at odds with the experimental
data.

The second mechanism for increasing the burst period is to increase the inter-
val of bistability, that is, the horizontal distance between the lower saddle node
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Figure 3. The burst period is increased when the fraction of free Ca2+, fcyt, is decreased
to fcyt = 0.0005. This results in a slow sawtooth Ca2+ oscillation, which is at odds with
Ca2+ fluorescence data.

Figure 4. Decreasing the conductance of the K(Ca) current stretches thez-curve, resulting
in a longer burst period. Only the stationary branches are shown.

bifurcation and the homoclinic bifurcation inFig. 2. This can be done by reducing
the conductance parametergK(Ca), which stretches thez-curve (Fig. 4). However,
the increase in burst period achieved through stretching is very limited, since if the
z-curve is stretched too much the nullcline intersects the periodic branch and the
model cell spikes continuously. For example, the bursting produced withgK(Ca) =
170 pS has a period of 3 s, 50% greater than withgK(Ca) = 300 pS. IfgK(Ca) is
decreased further to 160 pS the cell spikes continuously. It is difficult to attain
anything near the 10-fold increase in burst period required to convert a fast burster
into a medium burster. An alternative way to increase burst period while preserving
the fast equilibration ofc is given in the next section.

3. BURSTING MODEL WITH TWO SLOW VARIABLES

3.1. Roles of the endoplasmic reticulum. The ERacts as a high-capacity store
for Ca2+ (Clapham, 1995). Ca2+ enters the ER via ATP-driven pumps in the ER
membrane (SERCA pumps) and leaves through a leakage pathway and through
inositol 1,4,5-trisphosphate receptor-channels, IP3R (Berridge and Irvine, 1989).
Thus, the ER acts as both a Ca2+ source and a Ca2+ sink.
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The ER influences the electrical activity of many excitable cell types. In the
β-cell, the ER is a target for several hormones and neurotransmitters. The parasym-
pathetic transmitter acetylcholine (ACh) binds to muscarinic receptors in theβ-
cell membrane (Santos and Rojas, 1989) and activates phospholipase C, which
produces IP3 and diacylglycerol. The IP3 activates IP3R in the ER membrane,
increasing the Ca2+ efflux from the ER (Berridge and Irvine, 1989). Application
of ACh to mouse islets in the presence of glucose converts medium bursting to fast
bursting with a depolarized silent phase (Gilon and Henquin, 2001). These changes
result in enhanced insulin secretion, which is critical to thein vivo response after a
meal (Woods and Porte, 1974).

Below we show how the ER acts as a filter to mold thekinetics of cytosolic Ca2+.
In Section 3.3wedemonstrate that oscillations in the ER Ca2+ concentration can be
important in driving medium bursting, with the ER Ca2+ concentration playing the
role ofs2 in the phantom bursting mechanism (Bertramet al., 2000). In Section 3.4
weshow that the model can also account for the effects of muscarinic agonists.

3.2. Ca2+ concentration in the ER. Weassume that the Ca2+ influx into the ER
via SERCA pumps depends linearly on the cytosolic Ca2+ concentration:

JSERCA = kSERCAc. (12)

The linear expressions for flux through SERCA and membrane pumps [equations
(11) and (12)] are used for convenience in analysis. In particular, thec nullcline
can then be calculated analytically. The results are similar if the standard non-linear
expressions are used for both pumps.

The efflux out of the ER has two components. The Ca2+ leak is taken to be
proportional to the gradient between Ca2+ concentrations in the cytosol and the
ER (cer):

Jleak = pleak(cer − c). (13)

Ca2+ efflux through the IP3R is the second component. We use a model based on
Li and Rinzel (1994):

JIP3 = O∞(cer − c), (14)

whereO∞ is the fraction of open channels. IP3 channels are activated by IP3 and
by cytosolic Ca2+, and are also inactivated by cytosolic Ca2+. We assume that all
three processes equilibrate rapidly, and use the following steady-state function in
equation (14):

O∞ =
(

c

dact + c

)3 (
IP3

dIP3 + IP3

)3 (
dinact

dinact + c

)3

, (15)

where the first factor represents activation byc, thesecond activation by IP3, and
the third inactivation by higher concentrations ofc. For simplicity, we use IP3
without brackets to represent the IP3 concentration.
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Table 2. Parameter values for model with ER.

Parameter Value Parameter Value

kPMCA 0.2 ms−1 fer 0.01
kSERCA 0.4 ms−1 pleak 0.0005 ms−1

dact 0.35µM dIP3 0.5 µM
dinact 0.4 µM Vcyt/Ver 5

The net Ca2+ efflux from the ER is

Jer = Jleak + JIP3 − JSERCA. (16)

Since this represents an additional influx term to the cytosolic Ca2+ compartment,
we modify the differential equation forc:

dc

dt
= fcyt(Jmem+ Jer). (17)

For the ER Ca2+ concentration,Jer must be scaled by the ratio of the volumes of
the cytoplasmic compartment(Vcyt) and the ER compartment(Ver):

dcer

dt
= − fer(Vcyt/Ver)Jer, (18)

where fer is the fraction of free Ca2+ in the ER.
In summary, the differential equations for theβ-cell model with ER are given by

equations (1), (2), (17) and (18). Parameter values are as given inTable 1, except
those listed inTable 2. The IP3 concentration is 0 unless stated otherwise.

3.3. Medium bursting via the phantom bursting mechanism. The ER Ca2+
concentration, like the cytosolic concentration, is a slow variable, albeit much
slower. However, whilec affects the membrane potential directly through K(Ca)
conductance,cer affects the membrane only indirectly throughc. Geometrically,
cer modulates thec or ω nullcline, but has no effect on thez-curve. We therefore
analyze the dynamics of the system through a fast/slow analysis as before, withω

as the bifurcation parameter. However, the nullcline now slowly changes as the ER
fills and empties.

Thec nullcline (with IP3 = 0) is given by

c∞ = pleakcer − α ICa

kPMCA + pleak + kSERCA
, (19)

which is thentransformed by equation (10) to yield theω nullcline. Fig. 5 shows
theω nullcline in theω–V plane for several values ofcer. Whencer is increased,
the nullcline is stretched, which has the effect of shifting it downward.
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Figure 5. Theω nullcline for three values of the ER Ca2+ concentration (in µM). Increas-
ing cer stretches and lowers the nullcline.

As discussed earlier, one way to change the burst period is to stretch/compress
the z-curve by decreasing/increasing the K(Ca) conductance (Fig. 4). With large
conductance(gK(Ca) = 900 pS) thez-curve is compressed and theβ-cell model
with ER generates a fast bursting oscillation (Fig. 6). Over the duration of a burst
cer varies from 100 to 101µM, a small range which has little effect on theω
nullcline. One way to demonstrate the effects of the dynamics ofcer on bursting
is to clampcer at its mean value. Whencer is clamped at 100.5 µM, the fast
bursting oscillation persists. Thus, with a large K(Ca) conductance, the behavior
of the enhanced model with two slow variables is very much like the behavior of
the basic single-slow variable model (Fig. 1). Using the phase plane view, the
dynamics can be described as inFig. 2, except that there are tiny oscillations in the
nullcline (not shown).

When the K(Ca) conductance is reduced (gK(Ca) = 700 pS) thez-curve is stret-
ched and the burst period is increased. As discussed earlier, with the single-slow
variable model significant stretching produces continuous spiking since the phase
point becomes stuck on the periodic branch. With the two-slow variable model,
the z-curve can be stretched to a much greater extent and still produce bursting.
This is because when the nullcline intersects the periodic branch the spiking activ-
ity increases the ER Ca2+ concentration, which slowly stretches and lowers the
nullcline. Eventually the nullcline is lowered sufficiently so that the phase point
escapes from the periodic branch and is attracted to the stationary bottom branch
of the z-curve (Fig. 7, cer = 108 µM). The phase point traverses most of the
stationary branch before stalling again at the intersection with the nullcline. How-
ever, the cessation of spiking eliminates Ca2+ influx into the cell and into the ER,
so there is a net reduction incer as Ca2+ continues to leak out of the ER. This
results in a leftward shift of theω nullcline, slowly moving the pseudo-equilibrium
leftward along the stationary branch toward the saddle-node bifurcation. When
this bifurcation is reached the phase point escapes from the stationary branch and
is attracted to the periodic branch, restarting the active phase of bursting (Fig. 7,
cer = 94µM).
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Figure 6. Fast bursting is produced when K(Ca) conductance is large, compressing the
z-curve. The smallcer oscillations have little effect on the bursting. Parameter values are
listed inTables 1and2, exceptgK(Ca) = 900 pS andgK(ATP) = 227.5 pS.

This scenario results in a bursting oscillation (Fig. 8) with period an order
of magnitude greater than that of fast bursting. Oscillations in bothc and cer

are required: ifcer is clamped the cell either spikes continuously or is in a rest
state. Thus, both slow variables are essential, and the burst period depends on the
timescales of both variables. If the stretching is not extreme [gK(Ca) not too small],
the trajectory only briefly stalls at the end of the active and silent phases, so most of
the time is spent traversing the periodic and stationary branches and thec timescale
dominates. If the stretching is extreme, the phase point stalls during most of the
burst period, and the period is determined primarily by thecer timescale. Slow
bursting with a period of up to several minutes can be obtained by further reducing
gK(Ca), which further stretches thez-curve (not shown).

The oscillations incer also result in a new qualitative feature of thec timecourse,
the slowly decaying tail ofc during the silent phase as the ER gives back the Ca2+
that it has taken up during the active phase [Fig. 8(b)]. There is also necessarily a
slow rise ofc during the active phase due to increased efflux of Ca2+ from the ER
as it slowly fills. This rise is obscured by the rapid oscillations ofc in Fig. 8(b),
but it is essential as it is the only source of enhanced negative feedback that dis-
tinguishes the end of the active phase from the beginning. The mixture of fast and
slow components inc, stemming from the intrinsic kinetics ofc and from the ER,
respectively, is a critical step toward bringing thec timecourse into agreement with
the experimentally observed patterns. Further refinements will be achieved below
by adding a second very slow process to the model (seeFig. 13).
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Figure 7. When the K(Ca) conductance is reduced togK(Ca) = 700 pS (withgK(ATP) =
230 pS) thez-curve is stretched. As a result, thephase point stalls in both the active and
silent phases, escaping only when activity-dependent changes incer (labelled) shifts the
nullcline sufficiently far to the right or left.

3.4. Muscarinic fast bursting. In addition to glucose, pancreatic islets are con-
trolled by the hypothalamus via the autonomic nervous system (Woods and Porte,
1974). Acetylcholine released from parasympathetic nerves enhances insulin secre-
tion, and in vitro studies show that this is due partly to its effect on the islet
electrical activity and Ca2+ dynamics (Gilon and Henquin, 2001). Acetylcholine
binds to muscarinic receptors in theβ-cell membrane, leading to the intracel-
lular production of IP3 and diacylglycerol (Santos and Rojas, 1989). IP3 acti-
vates Ca2+ flux through the IP3R [equation (14)], which increases cytosolic Ca2+
and enhances insulin secretion. DAG sensitizes the secretory machinery to Ca2+
(Bozem and Henquin, 1988), but this effect is beyond the scope of the present
model.

Fig. 9shows the effects of IP3 on a medium bursting model cell (with parameter
valuesas in Fig. 8). After 100 s the IP3 concentration is increased from 0 to
0.3 µM. The immediate effect is a spike in the cytosolic Ca2+ concentration as
Ca2+ floods out of the ER and into the cytosol. This hyperpolarizes the membrane
through activation ofIK(Ca). After the Ca2+ spike is dissipated by Ca2+ pumps in
the plasma membrane, the cell again begins to burst. However, this bursting is
much faster than the bursting prior to the addition of ACh (inset to panel A shows
expanded view). This is because the rise in IP3 and subsequent reduction incer

changes the shape of theω nullcline, so that it now intersects thez-curve in the
same way as it did during the fast bursting described earlier.Fig. 10 shows the
z-curve withω nullcline prior to (dotted) and following (dashed) the addition of
IP3 (and after the transient hyperpolarization). The superimposed muscarinic burst
trajectory does not stall in either the active or silent phase, and the bursting is driven
entirely byω. Indeed, whencer is clamped at its average value of 53.1 µM the fast
muscarinic bursting persists (not shown).

Although the transient hyperpolarization and increased burst frequency are con-
sistent with experimental data (Gilon and Henquin, 2001), the simulation and the
data differ in one respect. In most experimental recordings the silent phase of
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Figure 8. Medium bursting produced through the phantom bursting mechanism (with
gK(Ca) = 700 pS,gK(ATP) = 230 pS). This requires activity-dependent oscillations in
bothc andcer.

the muscarinic bursting is depolarized, while in the simulation the minimum silent
phase voltage during muscarinic bursting is the same as that during medium burst-
ing [Fig. 9(a)]. The depolarization is reflected in an elevated mean Ca2+ concen-
tration, which is also not reproduced by the model [Fig. 9(b)].

The extra depolarization can be introduced into the model in at least two ways:
(1) assume that the muscarinic agonist itself activates a depolarizing current, a
receptor operated current (ROC) or (2) assume that depletion of the ER Ca2+ acti-
vates a storeoperated current (SOC). There is evidence for both in islets (Miura
et al., 1996, 1997; Roeet al., 1998; Mears and Zimliki, 2003). Here we illustrate
direct activation of a ROC by ACh,

IACh = gACh(V − VACh), (20)

whereVACh = 0.
Fig. 11 shows the effect of a muscarinic agonist whenIACh is included in the

model [equation (1)]. To simulate application of a muscarinic agonist, the IP3

concentration is set to 0.3 µM and the ACh current conductancegACh is set to
15 pS. The extra depolarization provided byIACh elevates the silent phase volt-
age of the muscarinic bursting [Fig. 11(a)]. In terms of the phase plane analysis,
this occurs for two reasons. One is thatIACh lifts the bottom stationary branch of
the z-curve. (Note thatIACh is larger in magnitude at lower voltages.) The other
reason is that the bursting is so fast that the phase point never actually reaches
the bottom branch during the silent phase, but instead moves along a trajectory
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Figure 9. Conversion from medium bursting (gK(Ca) = 700 pS,gK(ATP) = 230 pS) to fast
bursting producedby activation of IP3 receptors/channels (IP3 = 0.3 µM as indicated). (a)
Upon IP3 application the membraneis initially hyperpolarized byIK(Ca), but thenrecovers
into a fast bursting pattern (inset shows expanded view). The minimum silent phase voltage
is not elevated following IP3 application (dashed line). (b) Although the Ca2+ profile is
changed, the mean concentration is unaffected by the IP3. (c) The ER is largely drained by
activation of IP3 channels.

that lies between the middle and bottom branches, similar to the trajectory pre-
sented inFig. 2. As a result ofthe elevated voltage, the mean Ca2+ concentration
is also elevated [Fig. 11(b)], as observed in the experimental data (Bertram et al.,
1995).

Wenote that adding ROC alone, without dumping the stores, is sufficient to pro-
duce faster, depolarized bursting. However, while this is a theoretical possibility,
it appears thatβ-cells do not work this way—muscarinic agonists do dump the
stores. The point of the analysis in this section is that they must activate an inward
current as well.

4. BURSTING MODEL WITH THREE SLOW VARIABLES

4.1. Evidence for nucleotide oscillations. Glucose metabolism provides the ATP
that powers pumps, which maintain ionic gradients, and drives exocytosis.β-
cells are unusual in that the nucleotide ratio, ADP/ATP, varies with the glucose
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Figure 10. With IP3 = 0.3 µM the shape of theω nullcline is changed, so that the super-
imposed muscarinic bursting is driven entirely byω. Thedotted curveis the nullcline with
IP3 = 0 (and withcer = 108µM). The dashed curve is thenullcline with IP3 = 0.3 (and
with cer = 53 µM). This latter nullcline was computed numerically, since equation (19)
does not apply when IP3 �= 0. In both casesgK(Ca) = 700 pS andgK(ATP) = 230 pS.

concentration. At low glucose, the ratio is large, while at higher glucose levels the
increased metabolism raises ATP relative to ADP, decreasing the nucleotide ratio.
Through the nucleotide ratio glucose directly modulatesβ-cell electrical activity
by controlling the activity of the nucleotide-sensitive current,IK(ATP) [equation (7);
Ashcroft et al., 1984]. The conductance of the K(ATP) channel,gK(ATP), is large
when thenucleotide ratio is large. Thus, when glucose is low,gK(ATP) is high, and
β-cells are hyperpolarized. When the glucose concentration is elevatedgK(ATP) is
reduced and bursting is possible.

In the models described thus fargK(ATP) is constant, set at a low value to simulate
the case of a stimulatory glucose level. There is, however, substantial evidence
from mouse islets that the ADP/ATP ratio, the K(ATP) conductance, and oxygen
consumption, an indicator of ATP production, are oscillatory even when the bath
glucose concentration is constant (Dryselius et al., 1994; Larssonet al., 1996; Nils-
sonet al., 1996; Ainscow and Rutter, 2002; Kennedyet al., 2002). Most of the
data support the hypothesis that oscillations in ADP/ATP are due to the influence
of Ca2+ on ATP production or utilization (Ainscow and Rutter, 2002; Kennedy
et al., 2002). Nucleotide oscillations may also result from oscillations in glycoly-
sis (Longoet al., 1991; Nilssonet al., 1996; Tornheim, 1997), but in what follows
weassume a Ca2+-dependent pathway.

One possible mechanism for negative feedback of Ca2+ on ATP production in
islets was postulated by Keizer and Magnus (Keizer and Magnus, 1989; Mag-
nus and Keizer, 1997). These authors argued that Ca2+ reduces the mitochondrial
membrane potential, thus reducing ATP production and increasing the ADP/ATP
ratio. Evidence for this effect has recently been reported in mouseβ-cells (Krippeit-
Drewset al., 2000). An alternative mechanism for a Ca2+-mediated increase in
ADP/ATP is that Ca2+ pumps in the plasma membrane and in the ER membrane
work harder when the cytosolic Ca2+ level is elevated. Since these pumps are
powered by ATP hydrolysis, the level of ADP increases at the expense of ATP
(Detimary et al., 1998).
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Figure 11. Conversion from medium bursting (gK(Ca) = 700 pS,gK(ATP) = 230 pS) to
fast bursting (IP3 = 0.3 µM) when a depolarizing ACh current is included in the model
(gACh = 15 pS). (a) The muscarinic bursting is now fast and the silent phase is depolarized
above that of the prior medium bursting (dashed line). (b) The depolarized muscarinic
bursting raises theaverage Ca2+ concentration. (c) The ER is drained by activation of IP3
channels.

Weassume that the nucleotide ratioa = ADP/ATP satisfies the first-order kinetic
equation

da

dt
= (a∞(c) − a)/τa. (21)

The equilibrium function,a∞(c), has an increasing sigmoidal dependence on cyto-
solic Ca2+ concentration:

a∞(c) = [1 + e(r−c)/sa ]−1. (22)

This relation reflects either the inhibitory action of Ca2+ on mitochondrial mem-
brane potential, or the increased utilization of ATP when Ca2+ concentration is
elevated. The time constant,τa, is set to 5 min, consistent with data showing that
nucleotide oscillations often occur on a timescale of several minutes. Finally, the
hyperpolarizing K(ATP) current [equation (7)] is replaced by

IK(ATP) = gK(ATP)a(V − VK ). (23)

Parameter values are given inTable 3.
This simple model of the Ca2+-dependent dynamics of the nucleotide ratio is

meant to be qualitative in nature, capturing phenomenological features of the inter-
action rather than detailed quantitative or mechanistic aspects. A mechanistic
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Table 3. Parameter values for model with nucleotide dynamics.

Parameter Value Parameter Value

r 0.14µM sa 0.1 µM
τa 300 000 ms gK(ATP) 500 pS

Figure 12. Thez-curve for two values of the nucleotide ratioa. Increasing the ratio trans-
lates thez-curve to the left.

model of the negative feedback of Ca2+ on ATP production has been developed
previously (Keizer and Magnus, 1989; Magnus and Keizer, 1997), and our results
carry over to a model that includes this more detailed Keizer–Magnus formulation.

4.2. Slow bursting via metabolic oscillations. Thenucleotide ratioa enters into
the system through theV equation [equation (1)], so it affects thez-curve in the
fast subsystem bifurcation diagram. The conductance ofIK(ATP) is larger for larger
values ofa, so lessω is needed to give the same amount of inhibition through
IK(Ca). Thus, increasinga translates thez-curve to the left (Fig. 12). Inclusion of
the a dynamics exploits a geometrical degree of freedom unused up to this point,
which complements the motions of theω nullcline described previously.

Becausea adjusts slowly to changes inc (τa is large), it oscillates over a very
narrow range of values during fast bursting and the effect on thez-curve is negli-
gible. WhengK(Ca) is reduced to 700 pS, a value that produced medium bursting
when K(ATP) conductance was constant (Fig. 8), the system still produces medium
bursting (not shown). Nowa varies between 0.460 and 0.464, and the effect on the
z-curve is small, but no longer negligible. Ifa is held fixed at 0.462, near its aver-
age value, the bursting slows down, with a longer active phase and a longer silent
phase.

The real impact of a dynamic nucleotide ratio, however, is seen whengK(Ca)

is reduced further, to 100 pS (Fig. 13). This stretches thez-curve so much that
cer-induced motion of the nullcline is insufficient to liberate the phase point from
its stalled state. If the nucleotide ratio is held constant, the system either spikes
continuously or remains in a hyperpolarized rest state, depending on the value ofa.
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Figure 13. Slow bursting produced when thez-curve is stretched by reducinggK(Ca) =
100 pS. All three slow variables,c, cer, anda, interact to produce this oscillation, but the
rate-limiting variable isa.

When thez-curve is stretched to this extent, oscillations ina [Fig. 13(d)] are
required to shift thez-curve sufficiently far to the left to permit the phase point to
escape the active phase, and sufficiently far to the right to permit the phase point
to escape the silent phase. Because of the large time constantτa, however, these
z-curve translations are very slow. As a result, the bursting that occurs can have
a period of up to several minutes [Fig. 13(a)]. With gK(Ca) = 100 pS the burst
period is 275 s, within the range of periods often observed inβ-cells and islets
(Ashcroft et al., 1984; Valdeolmillos et al., 1996; Liu et al., 1998; Zhanget al.,
2003). The ER Ca2+ concentration now varies over a wide range of values during
a burst [Fig. 13(c)], which results in large shifts in theω nullcline during a burst.
However, the slow changes ina are rate limiting and are essential for the slowest
bursting rhythms.

The prolonged bursts increase the amplitude of thecer oscillations, which enhan-
ces the slow tail ofc during the silent phase. [Fig. 13(b); compare with thec time-
course in the model with ER but constant nucleotide ratio,Fig. 8(b).] The slow rise
of c during the active phase is initially also enhanced but is subsequently blunted
by the rise ina, which reduces spike frequency and hinders Ca2+ entry. Although
experimentally these features have not been explored systematically, impressionis-
tic evidence suggests that slow tails are seen most prominently during the slowest
bursting, and that slow rises are seen only rarely (Zhanget al., 2003).

4.3. Slow bursting persists when Ca2+ stores are depleted. Two key experi-
mental findings shed light on the role of the ER and the nucleotide ratio inβ-cell
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Figure 14. Simulated application of the SERCA pump blocker thapsigargin(kSERCA = 0)

converts medium bursting [gK(Ca) = 700 pS] to fast bursting.

bursting. First, it has been shown that islets exhibiting a medium bursting rhythm
convert to continuous spiking when SERCA pumps are inhibited by thapsigargin
(Worley III et al., 1994) or thapsigargin plus acetylcholine (Bertram et al., 1995).
Second, it has been shown thatβ-cells exhibiting a slow oscillation in free cytoso-
lic Ca2+ (presumably due to slow bursting) continue to oscillate with a higher, but
still low, frequency following application of thapsigargin (Liu et al., 1995, 1998;
Miura et al., 1997; Gilon et al., 1999). These data raise the question of how the ER
can have such a dramatic impact on medium bursting, while having little effect on
slow bursting. We address this here by simulating the application of thapsigargin
(Tg) to medium and slow bursting model cells. This is done by setting the SERCA
pump ratekSERCA to 0.

When Tg is applied to a model cell exhibiting medium bursting [gK(Ca)=700 pS],
the rhythm is converted to a fast bursting pattern (Fig. 14). This is due to the pre-
cipitous drop in the ER Ca2+ concentration in response to SERCA pump blockage,
which affects theω nullcline in two ways: (1) it is now sharper, so it intersects the
z-curve only on the middle (unstable) branch, and (2) it is now virtually static. It
is the middle-branch intersection that allows for the fast bursting driven entirely by
c, just as in the case of muscarinic bursting (Figs. 9and10). This pattern does
not quite match the experimental data, which indicates continuous spiking in the
presence of Tg (Worley III et al., 1994). If the ER is assumed to activate a depo-
larizing SOC current, then simulated application of Tg does elicit a continuous
spiking pattern. However, then ACh also converts medium bursting to continuous
spiking rather than fast bursting.
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Figure 15. (a) Slow bursting [gK(Ca) = 100 pS] persists when SERCA pumps are blocked
(kSERCA = 0). (b) The cytoslic Ca2+ rises to a higher level and has no Ca2+ tail following
Tg application. (c) The ER drains following Tg application. (d) The slow bursting is driven
by oscillations in bothcer and the nucleotide ratio before Tg application, but solely by the
nucleotide ratio after Tg application.

When application of Tg is simulated in a slow bursting cell [gK(Ca) = 100 pS] the
response is quite different. Rather than the dramatic increase in burst frequency,
the slow bursting persists, though with an increase in frequency (Fig. 15), as seen
in the experiments cited above. In the model, this works because the slow burst-
ing is driven primarily by nucleotide oscillations. When the SERCA pumps are
blocked and the ER is drained [Fig. 15(c)], theω nullcline again changes shape
and becomes static. In the slow bursters, however, thez-curve is stretched more
becausegK(Ca) is small, so theω nullcline intersects the bottom stationary branch
as well as the periodic branch. The bursting is thus driven purely by a slow move-
mentof the z-curve without help from movement of theω nullcline. The shorter
period is due to the different shape of the nullcline, which is now sharper.

When the SERCA pumps are inhibited, the timecourse ofc also has a differ-
ent shape. Most notably, the slow Ca2+ tail during the silent phase, described in
Section 4.2, disappears in Tg because the ER can no longer sequester Ca2+. Also,
the cytosolic Ca2+ declines throughout the active phase in Tg because the growing
inhibitory effect ofa on Ca2+ entry is not balanced by the slow rise inc normally
produced by ER filling. Finally,c rises to a much higher level in Tg. All of these
features match the experimental data when SERCA is blocked pharmacologically
(Gilon et al., 1999; Arredouaniet al., 2002a) or when a component of SERCA is
knocked out genetically (Arredouaniet al., 2002b).
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5. EFFECTS OF K(ATP) CHANNEL MODULATORS

5.1. Triphasic response to glucose. Islets respond to step increases in the extra-
cellular glucose concentration with a triphasic pattern of insulin secretion, con-
sisting of an initial delay, followed by a rapid peak of insulin release, followed
by a lower level of sustained, oscillatory secretion (Grodsky, 1989). A triphasic
pattern in islet electrical activity is also observed (Meissner and Atwater, 1976).
Upon application of glucose the islet remains hyperpolarized for a minute or more,
followed by a period of continuous spiking, followed by sustained bursting. (If
the glucose concentration is very large, more than 20 mM, the islet spikes con-
tinuously and never enters a bursting mode.) The triphasic response to glucose is
finally also exhibited in the cytosolic Ca2+ concentration (Roeet al., 1993), which
initially declines upon glucose application (phase 0). This is followed by an eleva-
tion that lasts for more than a minute (phase 1), and finally by sustained oscillations
(phase 2). In this section we show that the model with ER and nucleotide dynamics
can account for these complex transients.

There is considerable evidence that the initial decline in the Ca2+ concentration
is due to upregulation of SERCA pumps, initiated by the increased production of
ATP concentration when glucose is elevated (Roeet al., 1994; Chowet al., 1995;
Gilon et al., 1999). The electrical spiking, rise in Ca2+ concentration, and increased
insulin secretion that characterize phases 1 and 2 are mainly due to the closure of
K(ATP) channels in response to the decreased ADP/ATP ratio (Ashcroft et al.,
1984).

In the model, we simulate the low glucose state by reducing the SERCA pump
rate tokSERCA = 0.05 ms−1 and increasing the equilibrium ADP/ATP ratio by
decreasing the parameterr to 0 [equation (22)]. With these parameter values the
model cell goes to a hyperpolarized rest state with low cytosolic and ER Ca2+
concentrations (Fig. 16). Because of the low value ofr , the resting value ofa is
relatively large. In the phase plane, theω nullcline intersects thez-curve on the
bottom branch, far to the right of the lower saddle node bifurcation (not shown).

Glucose application is simulated by steppingkSERCAandr to their default values,
kSERCA = 0.4 ms−1 andr = 0.14 µM (Fig. 16, horizontal bar). In response to the
increase inr, a slowly declines. In the phase plane, this slowly shifts thez-curve
to the right. However, theω nullcline continues to intersect the bottom stationary
branch of thez-curve whilea declines, and the system remains hyperpolarized.
Thus, the initial response to glucose is a delay while thez-curve slowly shifts to
the right. In addition, sincekSERCA is increased, enough pumping of cytosolic Ca2+
from the cytosol to the ER occurs to cause a noticeable drop in the cytosolic Ca2+
concentration [Fig. 16(b)]. Thus, both the delay and the Ca2+ drop characteristic
of phase 0 in experiments are captured by the model.

Within three minutes of the simulated application of glucose, the nucleotide ratio
[and thus the K(ATP) conductance] have fallen to a level sufficiently low that the
system begins to spike. In the phase plane, thez-curve has shifted far enough to
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Figure 16. Triphasic response to glucose. The initial low glucose state is simulated by
settingkSERCA = 0.05 ms−1 andr = 0. Stimulatory glucose is simulated by increasing
both parameters, tokSERCA = 0.4 ms−1 andr = 0.14 µM. Throughout the simulation
gK(Ca) = 700 pS and̄gK(ATP) = 500 pS.

the right that the nullcline has passed the lower saddle-node and now intersects the
periodic branch. The prior hyperpolarization has left the ER largely depleted, in
spite of the modest refilling during phase 0, and this prevents the nullcline from
reaching the homoclinic termination of the periodic branch until the ER fills to the
level it normally attains during phase 2 [Fig. 16(c)]. Thus, the phase 1 response of
extended spiking activity is a prolonged active phase caused by the delayed filling
of the ER. Phase 2 commences when the ER is filled.

A prediction of this model is that there should be little or no phase 1 in slowly
bursting cells or islets. This is in fact what was found inZhanget al. (2003), where
both medium and slow islets were observed. The duration of the first burst was
about the same in both medium and slow islets, but the ratio of the second burst
duration to the first burst duration approached 1 for the slower islets.

5.2. Slow bursting in tolbutamide and thapsigargin. If, as we postulate, the ER
Ca2+ and nucleotide oscillations are key players in medium and slow bursting, then
the bursting may be greatly altered if one of these variables is perturbed. Such was
the case when the SERCA pump blocker thapsigargin was applied toβ-cells and
islets. However, as we described earlier, Tg had a large effect on medium bursting,
but not slow bursting, which we attribute to the presence of an oscillatory K(ATP)
conductance. A natural experiment, then, is to pharmacologically alter both the ER
Ca2+ and the K(ATP) conductance. This experiment has recently been performed
(Fridlyandet al., 2003a). First, the K(ATP) channel blocker tolbutamide was added
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Figure 17. Slow bursting produced by simulated application of tolbutamide (Tolb.,
ḡK(ATP) = 300 pS) in the presence of a low glucose concentration(kSERCA =
0.1 ms−1, r = 0.04 µM). Application of thapsigargin (Tg,kSERCA = 0) is simulated
after 10 min. Bursting is driven bycer anda prior to Tg application, and bya following
Tg application. Throughout the simulation,gK(Ca) = 100 pS.

to a bath containing a low (3 mM) glucose concentration. This resulted in a slow
bursting oscillation that persisted when Tg was added to the bath. Here we interpret
the results of this experiment with our mathematical model.

To simulate a low (but non-zero) glucose concentration, we reduce the SERCA
pump rate tokSERCA = 0.1 ms−1, and increase the equilibrium nucleotide ratio by
settingr = 0.04 µM. With the default value of K(ATP) conductance,ḡK(ATP) =
500 pS, the system comes to rest at a hyperpolarized voltage, as in experiments.
Application of tolbutamide reduces the availability of K(ATP) channels, which we
simulate by reducinḡgK(ATP) to 300 pS. With the reduction of this hyperpolarizing
conductance, the model cell becomes electrically active. In fact, with the small
value of gK(Ca) chosen here, it exhibits a slow bursting pattern (Fig. 17). One
might expect the system to spike continuously, since much of the conductance
for the current (IK(ATP)) that normally drives slow bursting has been removed by
tolbutamide. Nonetheless, the system bursts because the nucleotide ratio is able to
compensate for the reduction inḡK(ATP), by moving to a higher mean value [com-
pareFig. 17(d) to Fig. 13(d)]. Thus, although̄gK(ATP) has been reduced, the actual
conductance of the current,ḡK(ATP)a, is in an appropriate range for slow bursting
driven primarily bya. For thesame reason, when the application of Tg is simu-
lated (kSERCA = 0), the slow bursting persists, with a slight increase in frequency
(Fig. 17).
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This scenario requires that the nucleotide ratio be able to adapt to K(ATP) block
and to oscillate, driving the slow bursting. It is also important that tolbutamide
does not block all K(ATP) channels, or that elevations in ADP/ATP areable to
open some channels that had been blocked by tolbutamide. Indeed, one experimen-
tal study found that islets repolarized, presumably due to the opening of K(ATP)
channels, when ATP production was inhibited by NaN3 in the presence of 50µM
tolbutamide (Henquin, 1998). Thus, either not all K(ATP) channels are blocked
by this concentration of tolbutamide, or those that are blocked can be opened by
lowering the ATP concentration (and increasing ADP/ATP). However, if too much
tolbutamide is applied, bursting may convert to continuous spiking (Miura et al.,
1997). The model would agree with this, becausea cannot rise sufficiently to over-
come the reduction ingK(ATP). Finally, it has been observed that it is not possible
(or very difficult) to obtain bursting with tolbutamide alone—a minimum amount
of glucose is required (Cook and Ikeuchi, 1989; Henquin, 1998). The model would
agree with this also, becausea cannot oscillate ifr is too small.

6. DISCUSSION

Our starting point for this study was the Chay–Keizer model forβ-cell electrical
activity. That model successfully explained a number of key experimental observa-
tions, but the predicted approximately mono-exponential rise and fall of cytosolic
Ca2+ concentration,c (Fig. 1), proved to be incorrect. Further, lacking an internal
Ca2+ store (ER), Chay–Keizer was unable to address phenomena related to store
dumping. Here, we have developed step-by-step a more comprehensive model that
accounts for a much wider range of phenomena.

We have not included all known or hypothesizedβ-cell mechanisms, but only
the minimum modifications needed to explain the data. By keeping the models
simple, we have been able to show how three slow processes, cytosolic Ca2+, ER
Ca2+, and thenucleotide ratio ADP/ATP,articulate geometrically as well as bio-
physically. We have also established a unified theoretical framework in which to
analyze a diverse family of models. All the mechanisms included here have been
incorporated into models previously, but the combination, the tuning to reproduce
a wide spectrum of phenomena, and the analysis are novel.

The first extension to Chay–Keizer described here was to add the ER (we will
call this the ER model, for brevity). The key role of the ER is to slow the rise
and fall of c, renderingc, andhencegK(Ca), slow enough to drive medium and
slow bursting; without the ER only fast bursting is possible (Fig. 1). When Ca2+
influx is suddenly increased, as at the beginning of the active phase of a burst,c
rises rapidly [Fig. 8(b)]. The elevation inc causes the ER to fill slowly, which
increases the rate of diffusive efflux [equation (13)]. This leads to a slow rise inc,
which remains in quasisteady state withcer. During the silent phase, the process
is reversed:c undergoes an initial rapid drop followed by a slow decline. Thus,
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Table 4. Summary of models.

All Tolbutamide
Slow burst plus
variables periods ACh Tg Triphasic Tg

c (1) No No No No No
c, cer (6) and (8) Yes Yes (9) and (11) No No No
c, cer, a (13) Yes Yes Yes (14) and (15) Yes (16) Yes (17)

c now has two components, a fast component from its own intrinsic kinetics and
a slow component imparted by the ER. This eliminates most of the error in thec
kinetics of the unmodified Chay–Keizer model.

The two components ofc also function like the slow variabless1 ands2 in the
generic phantom bursting model (Bertram et al., 2000). If the initial fast rise inc
during the active phase of a burst activates sufficientgK(Ca) to terminate spiking,
fast bursting ensues (Fig. 6). If not, the balance of the required negative feedback
develops on the slow ER timescale to produce medium (Fig. 8) or slow bursting.

The core element of the ER model, slow negative feedback bycer, which indi-
rectly activatesgK(Ca), wasalready contained in the last models ofChay (1996,
1997). This mechanism was also discovered independently in a non-β-cell model
by Shorten and Wall(2000). Chay’s model was able to reproduce the wide range
of β-cell oscillation periods through variation of the ER efflux rate. In contrast to
the ‘phantom’ effects of changinggK(Ca), whichstretches thez-curve (Fig. 4), pleak

affects the time constant and operating range ofcer. Geometrically, it controls the
speed at which thec nullcline sweeps back and forth across thez-curve in thev–c
phase plane.

In both our ER model and Chay’s, dumping the ER, whether by increasing efflux
or blocking influx, increases burst frequency, in agreement with experiment. In
order to obtain the observed depolarization as well, one must assume that an addi-
tional inward current is activated, either by the agonist (ROC;Fig. 11) or by the
store depletion itself (SOC). While we can simulate all the observed behaviors,
we cannot yet do it with one consistent set of parameters for both IP3R activation
and SERCA inhibition. It remains to be seen whether these discrepancies reflect
fundamental shortcomings in the model or repairable quantitative deficiencies.

Thus, adding an ER to Chay–Keizer largely corrects the kinetics ofc and accounts
for ER perturbations (due to ACh or Tg), and also vastly extends the range of
oscillation periods. These points are summarized inTable 4. However, the ER
model still fails to account for the observation that slow bursting is insensitive to
store depletion (Miura et al., 1997; Liu et al., 1998). We remedied this by adding
gK(ATP) as a second negative feedback target for Ca2+. (We will call this the ER-
ATP model, for brevity.) Unlike the response ofgK(Ca) to Ca2+, the response of
metabolism to Ca2+ was assumed to have intrinsically slow kinetics that are even
slower thancer. Consequently, slow bursting occurs (preferentially) whengK(Ca) is
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small, and can persist when the stores are dumped by thapsigargin (Fig. 15). In
contrast,gK(Ca) andcer are still important for medium bursting, which is vulnerable
to SERCA blockade (Fig. 14).

Another recent model (Fridlyandet al., 2003b) offers an alternative explanation
for the persistence of slow bursting in thapsigargin. In that model, medium bursting
is driven mainly by fluctuations incer via SOC, and hence is sensitive to SERCA
blockers. Slow bursting occurs when the ER is relatively depleted and SOC is
saturated. This allows a second slower negative feedback process to develop, acti-
vation of the electrogenic Na+–K+ pump by accumulation of intracellular Na+.
Although the latter depends indirectly on intracellular Ca2+ through the Na+–Ca2+
exchanger, it is apparently relatively insensitive to the state of the ER. Thus, as
in our ER-ATP model, the presence of a second slow process that is essentially
independent of the ER protects slow oscillations from ER perturbations. In both
models, thec timecourse is modified when Tg is applied in agreement with exper-
imental observations [Fig. 15(b)].

Fridlyand et al. (2003a) have shown that slow bursting persists if both SERCA
andgK(ATP) are blocked, suggesting that neithercer nor gK(ATP) is essential for slow
oscillations. We have shown here, however (Fig. 17), that slow oscillations in the
ER-ATP model can persist in the presence of both thapsigargin and tolbutamide
provided sufficient residualgK(ATP) remains. Nonetheless, if slow oscillations can
in fact occur with both SERCA andgK(ATP) completely blocked, our model would
have to be revised.

The ER-ATP model can also reproduce for the first time the key elements of the
triphasic response to a step in glucose from basal to stimulatory levels (Fig. 16).
Phase 0 is due to a slow decline ina, while phase 1 is due to the slow filling of
the ER. The mechanism of phase 1 differs from a previous model of ours (Bertram
et al., 1995). Although phase 1 was also mediated by slow filling of the ER in
the older model, the enhanced firing was due to activation of SOC rather than a
blunting of Ca2+-dependent negative feedback.

Another key difference inBertram et al. (1995) wasthat cer was much slower
than in the current model. Therefore,cer did not vary significantly during phase
2 bursting, andc exhibited only its fast component. In such a model, with just
two Ca2+ compartments, ER and cytosol, the ER can influence plasma membrane
channels in two ways: Ca2+-dependent channels, such as K(Ca), respond to fluxes
of ER Ca2+, and SOC responds to the level of ER Ca2+. Therefore, when the
ER is super-slow, it influences phase 2 bursting only by setting the level of SOC
conductance. Further, even when the store is dumped by a rise in IP3, there is
only a transient increase in burst frequency while the store is equilibrating to its
new, lower level, unless SOC is present. In the current model, in contrast, the
ER is alwayssourcing or sinking Ca2+ and can influence firing rate continually
without the need of SOC. The slow components ofc seen experimentally during
phase 2 suggest that the new model is closer to the truth. Thus, in this study we
have demonstrated that a suitably configured ER can control phase 1, phase 2, and
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muscarinic bursting largely through the effects of Ca2+ fluxes ongK(Ca), with SOC
playing a secondary role.

In addition to limitations already mentioned, one obvious oversight in the cur-
rent model is the experimental observation that thapsigargin blocksgK(Ca) (Goforth
et al., 2002), whereas the current model erroneously predicts anincrease. Thiscan
be fixed by adding a third Ca2+ compartment, a subspace between the ER and the
plasma membrane. Qualitatively, that model can do everything the current model
does, provided slow Ca2+-dependent nucleotide dynamics are included, and much
of the analysis presented here carries over.

The ability of each of the three models described in this paper, the Chay–Keizer
model, the ER model, and the ER-ATP model, to reproduce experimental obser-
vations is summarized inTable 4. The firstcolumn of the table lists the model
slow variables and figure numbers for the first instances in which the model was
used. The second refers to the ability of the model to produce fast, medium,
and slow bursting. The third refers to the effects of ACh, where medium burst-
ing is converted to fast bursting. The fourth refers to the effects of Tg, both on
slow bursting (remains slow) and on medium bursting (bursting speeds up or con-
verts to continuous spiking). The fifth column refers to the triphasic response to
glucose (initial delay, then continuous spiking, then bursting). The last column
refers to the ability of the model to produce slow bursting in the presence of tolbu-
tamide and thapsigargin. The figure number that illustrates each behavior is given
in parentheses. Computer codes for each model and each simulated experimen-
tal manipulation (suitable for the XPPAUT software package) can be downloaded
from http://mrb.niddk.nih.gov/sherman. Model animations are also included at this
site, illustrating the dynamics of each model in theω–V plane.

In conclusion, we end up with a model that is only a little more complicated
than Chay–Keizer, but is more correct and can explain much more. The core is
still negative feedback by cytosolic Ca2+, now on two targets:gK(Ca), whose slow
kinetics derive from the ER, andgK(ATP), whose slow kinetics may derive from
metabolism. There is much that has been left out and much that the model still
cannot do. Some phenomena requiring future effort include the effects of agonists
that elevatecAMP, such as glucagon-like peptide and caffeine, and epinephrine,
which inhibits insulin secretion and converts medium bursting to slow.
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