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Abstract

The electrical activity of insulin-secreting pancreatic islets of Langerhans is characterized by bursts of action potentials. Most

often this bursting is periodic, but in some cases it is modulated by an underlying slower rhythm. We suggest that the modulatory

rhythm for this complex bursting pattern is due to oscillations in glycolysis, while the bursting itself is generated by some other slow

process. To demonstrate this hypothesis, we couple a minimal model of glycolytic oscillations to a minimal model for activity-

dependent bursting in islets. We show that the combined model can reproduce several complex bursting patterns from mouse islets

published in the literature, and we illustrate how these complex oscillations are produced through the use of a fast/slow analysis.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

b-cells are located in pancreatic islets of Langerhans
and are responsible for the secretion of insulin following
an elevation in the blood glucose level. The cells are
electrically excitable, and Ca2þ brought in by action
potentials evokes the secretion of insulin (Atwater et al.,
1989). In in vitro recordings, b-cells display a bursting
pattern of electrical impulses in the presence of
stimulatory glucose concentrations ð> 10 mMÞ; consist-
ing of an active phase of spiking followed by a silent
phase of hyperpolarization (Dean and Mathews, 1970).
The rate of insulin release is roughly proportional to the
plateau fraction, i.e. the ratio of the active-phase
duration to the total period (Atwater et al., 1989).
Measurements of b-cell electrical activity in mouse

islets sometimes exhibit slow modulations of the
bursting rhythm. We call this ‘‘complex bursting’’. In
one study by Cook (1983) the normal 15-s (silent plus
active phase) bursting was modulated by a slow
variation in the plateau fraction. In this example of
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complex bursting, which we call ‘‘accordion bursting’’,
the plateau fraction exhibited an almost sinusoidal
variation with a period of 5 min (see simulation in
Fig. 7). In a study by Henquin and collaborators
(Henquin et al., 1982), three examples of complex
bursting were shown. In one example, the plateau
fraction first increases, then decreases, and is followed
by a ‘‘desert’’, during which the cell is hyperpolarized for
several minutes. The duration of the longest spiking
phase is several times longer than that of the shortest
active phase, and indeed the cell appears to be transiently
locked in a continuous spiking state (see simulation in
Fig. 9). The second example is similar to the first, except
that there are no deserts (see simulation in Fig. 11).
Finally, the third example consists of one short burst,

followed by a long burst, and then a desert (see
simulation in Fig. 12).
In these experimental recordings of mouse islet

behavior, two oscillatory modes appear to co-exist:
one for bursting, and a slower one that modulates the
bursting. In this report, we describe one possible
mechanism for these complex bursting patterns, with a
key role played by oscillations in glycolysis.
Glycolysis is the first stage of aerobic cellular

respiration. It converts glucose to products that are
further processed in the mitochondria to produce
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adenosine triphosphate (ATP) from adenosine dipho-
sphate (ADP). Oscillations in glycolysis have been
observed in yeast (Betz and Chance, 1965; Dan^ et al.,
1999), muscle extracts (Tornheim and Lowenstein, 1974,
1975), and b-cells (Longo et al., 1991). These oscillations
are thought to be due to the allosteric enzyme
phosphofructokinase (PFK), which phosphorylates
fructose-6-phosphate (F6P) to form fructose 1,6-bispho-
sphate (FBP). The PFK activity is subject to feedback
regulation by a number of factors, including positive
feedback by its product FBP, positive ADP feedback,
and negative ATP feedback (Goldbeter and Lefever,
1972; Tornheim and Lowenstein, 1975).
Our goals in this study were to determine whether the

complex bursting patterns observed in b-cells can be
explained by the interaction of a regular bursting
rhythm with slower glycolytic oscillations, and to
analyse the dynamics of this combined system. Several
mathematical models have been developed for glycolytic
oscillations. These differ in complexity and biological
detail, but all focus on the action of PFK (Goldbeter
and Lefever, 1972; Sel’kov, 1968; Smolen, 1995;
Tornheim, 1979; Westermark and Lansner, 2003). We
have chosen to use the model developed by Goldbeter
and Lefever (1972) since this is sufficient to generate the
required slow nucleotide oscillations and is sufficiently
simple to allow for an analysis of the combined model.
A more recent model by Westermark and Lansner
(2003) gives a more accurate representation of the
mechanism for glycolytic oscillations in b-cells, but it is
more complex than the Goldbeter–Lefever model and it
does not include a variable for the ATP concentration,
which is needed here. The model used for the b-cell
electrical activity is a variant of the Chay–Keizer model
(Chay and Keizer, 1983), the first model developed for
bursting in islets. Again, more accurate models now
exist for islet bursting, but this simpler description is
more convenient for the analysis performed in this
study.
Pancreatic b-cells contain a number of ion channel

types. Crucial for the glycolytic modulation is the ATP-
sensitive Kþ channel, which is activated by ADP and
inhibited by ATP. When glucose levels are low, so too is
the intracellular ATP concentration relative to ADP. In
this case, most of the K(ATP) channels are open,
yielding a large current IKðATPÞ that hyperpolarizes the
cell. At stimulatory glucose levels the ATP concentra-
tion is large and most of the K(ATP) channels are closed
(Cook et al., 1988), allowing the cell to burst. However,
if glycolytic oscillations occur, then at a constant
stimulatory glucose level the ATP concentration oscil-
lates, producing oscillations in the K(ATP) current
conductance. In this way, oscillations in glycolysis are
reflected in the electrical activity of the cell.
We begin by describing the models for glycolytic

oscillations and electrical bursting. We then demon-
strate how the interaction of the two oscillators can
reproduce the complex bursting patterns observed
experimentally, and investigate the dynamics of the
combined model using a fast/slow analysis.
2. The mathematical models

2.1. Model for glycolytic oscillations

The Goldbeter–Lefever model (Goldbeter and Lef-
ever, 1972) describes oscillations that can occur in the
ADP and ATP concentrations during glycolysis in yeast,
where there is positive feedback of ADP onto the
allosteric enzyme PFK (Fig. 1). While the feedback onto
PFK is different in mammals (positive feedback of FBP
rather than ADP, and negative feedback of ATP), in
both yeast and mammals the end result is a slow
oscillation in the nucleotide concentrations. The Goldb-
eter–Lefever model consists of two differential equations

dATP

dt
¼ ðn� FðADP;ATPÞÞ=tc; ð1Þ

dADP

dt
¼ ðFðADP;ATPÞ � ZADPÞ=tc; ð2Þ

where the function F is defined by

FðADP;ATPÞ ¼ ATPð1þ kADPÞ2: ð3Þ

For simplicity, we let ATP and ADP denote the
nucleotide concentrations. The parameter k ¼ 20 is
the ratio of the forward and reverse reaction rates of
the substrate ATP binding with PFK to produce ADP.
The time constant for the PFK reaction is represented
by tc: Z represents the degradation rate of ADP, while n
represents a constant influx of ATP into the system. The
function F represents the PFK-catalyzed reaction. ATP
is included in this function as an enzyme substrate and
ADP is included as an allosteric activator.
The dynamics of the model can be understood

through a phase plane analysis. The ATP and ADP
nullclines are defined as curves in which dATP=dt ¼ 0
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and dADP=dt ¼ 0; respectively. The system equilibrium
occurs at the intersection of the nullclines, and can be
stable or unstable. When the equilibrium occurs at a
location where the ADP nullcline has negative slope, as
in Fig. 2A, the glycolytic system can oscillate. The
period of the oscillation is set by the time constant tc:
Fig. 2B is a two-parameter bifurcation diagram showing
the combinations of parameters n and Z that yield
oscillations. The curves separating the stationary and
oscillatory regions of the nZ-plane are composed of
Hopf bifurcation points (HB). The large oscillatory
region of the nZ-plane suggests that oscillatory behavior
is a robust feature of the model.
Fig. 3 shows one example of ADP and ATP time

courses during oscillatory glycolysis. As ADP rises,
PFK activity increases, converting more ATP to ADP
and accelerating the rise of ADP. This accelerating PFK
activity leads to a rapid decline in substrate ATP
concentration, which decreases the enzyme activity and
restarts the cycle.

2.2. Model for electrical bursting

Several models have been developed for bursting in
pancreatic b-cells (Bertram et al., 2000; Chay, 1996;
Chay and Keizer, 1983; Goforth et al., 2002; Keizer and
Smolen, 1991; Sherman et al., 1988). These models differ
primarily in the slow process responsible for driving the
bursting. The first b-cell model was developed by Chay
and Keizer (1983), based on the hypothesis of Atwater
and Rojas (Atwater et al., 1980) that slow activity-
dependent oscillations in the cytosolic Ca2þ concentra-
tion drive the bursting via activation of a Ca2þ-activated
Kþ current. Although there is now evidence for
additional slow processes (Bertram and Sherman,
2000), this model stands as a template for some of the
more detailed models, and has the advantage of being
relatively simple. We therefore employ a model based on
that of Chay and Keizer, consisting of equations for
voltage ðV Þ; Kþ channel activation ðnÞ; and the free
cytosolic Ca2þ concentration ðcÞ

dV

dt
¼ �½ICa þ IK þ IKðCaÞ þ IKðATPÞ�=Cm; ð4Þ

dn

dt
¼ ½nNðV Þ � n�=tn; ð5Þ

dc

dt
¼ Jmem: ð6Þ

The change in voltage is determined by the dynamics of
the ionic currents, which include a Ca2þ current ðICaÞ; a
Kþ current (IK), a Ca2þ-activated Kþ current ðIKðCaÞÞ;
and an ATP-sensitive Kþ current ðIKðATPÞÞ: These are
defined as

ICa ¼ %gCamNðV ÞðV � VCaÞ; ð7Þ

IK ¼ %gKnðV � VKÞ; ð8Þ

IKðCaÞ ¼ %gKðCaÞoðcÞðV � VKÞ; ð9Þ

IKðATPÞ ¼
%gKðATPÞ

ATP
ðV � VKÞ; ð10Þ

where the steady-state functions are given by the
increasing hyperbolic expressions

mNðV Þ ¼ ½1þ eðvm�V Þ=sm ��1; ð11Þ

nNðV Þ ¼ ½1þ eðvn�V Þ=sn ��1: ð12Þ

Activation of ICa is rapid, so for simplicity it is assumed
to be instantaneous (Eq. (7)). The activation variable
for IKðCaÞ; o; is Ca2þ dependent and described by a
hyperbolic function

oðcÞ ¼
c

c þ kD

: ð13Þ
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The form of the K(ATP) conductance, %gKðATPÞ=ATP;
reflects the inverse dependence on the ATP concentra-
tion. Here we assume that ATP is non-zero (a valid
assumption physiologically), and we use a non-saturat-
ing function for the ATP dependence since, in our
simulations, the ATP concentration never approaches
the extreme values where saturation would occur. It is
through the K(ATP) conductance that glycolytic oscil-
lations affect the membrane potential. When uncoupled
from the glycolytic model the K(ATP) conductance is
constant.
Finally, Ca2þ influx through the membrane is

described by

Jmem ¼ �f ðaICa þ kccÞ; ð14Þ

where f is the ratio of free to total Ca2þ; a converts
current to flux, and kcc represents pumping of Ca2þ out
of the cell through plasma membrane Ca2þ ATPases.
Parameter values are given in Table 1, except for %gKðATPÞ

and f which are varied to yield different bursting
rhythms. Values for these parameters are given in the
figure captions.
Fig. 4A shows a typical bursting rhythm for the

membrane model uncoupled from the glycolytic oscilla-
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Fig. 4. (A) Bursting rhythm generated by the membrane model

ð %gKðATPÞ ¼ 170 pS; f ¼ 0:001Þ: Activity-dependent oscillations in the

free cytosolic Ca2þ concentration (dashed) drive the bursting. (B) Fast/

slow analysis of bursting. The burst trajectory (oriented clockwise) is

superimposed on the bifurcation diagram for the fast subsystem. The c

nullcline is also included.

Table 1

Parameter values for the bursting model

Parameter Value Parameter Value

gCa 1200 pS gK 3000 pS

gKðCaÞ 300 pS tn 16 ms

VCa 25 mV VK �75 mV
Cm 5300 fF kc 0.1

kD 0:3 mM a 2:25� 10�6 fA�1 mM ms�1

sm 12 mV vm �20 mV
sn 5:6 mV vn �16 mV
tor. When the Ca2þ-concentration drops below a
threshold value the magnitude of the hyperpolarizing
IKðCaÞ is sufficiently small to put the cell into an active
spiking phase. Each spike brings in Ca2þ; which
accumulates and activates more IKðCaÞ: When the Ca2þ

concentration accumulates to a sufficiently high level,
IKðCaÞ prevents the cell from reaching the spike threshold
and a silent phase commences.
The dynamics of the bursting oscillation are best

understood using a fast/slow analysis, where the fast and
slow dynamics are formally separated (Rinzel, 1985).
This approach is described in detail in Rinzel (1985,
1987) and Bertram et al. (1995). In the bursting model, c

evolves on a slower time scale than V and n; so in the
fast/slow analysis it is treated as a parameter of the fast
V -n subsystem. A fast subsystem bifurcation diagram is
then constructed with c as the bifurcation parameter.
The stationary branch is z-shaped (referred to as a
‘‘z-curve’’) with a stable lower branch that becomes
unstable at a saddle-node bifurcation, an unstable
middle branch of saddle points, and an unstable upper
branch surrounded by a periodic branch of stable limit
cycles (Fig. 4B). The periodic branch, reflecting trains of
electrical impulses, emanates from a Hopf bifurcation
(HB, location a) and terminates at an infinite-period
homoclinic bifurcation (location c). The stable station-
ary branch terminates at a saddle-node bifurcation
(location b).
The next step in the analysis is the superposition of

the c-nullcline

c ¼ �
a
kc

ICa: ð15Þ

The dynamics of the full three-dimensional system can
now be understood using the z-curve and c-nullcline.
Below the c-nullcline the trajectory moves to the left;
above the nullcline it moves to the right. Because of
the difference in time scales, motion is always along
stable branches of the fast substyem, except for rapid
transitions.
Finally, the bursting trajectory is projected onto the

V–n plane. During the silent phase the trajectory moves
leftward along the stationary branch until its termina-
tion at the saddle-node bifurcation at b: From here, the
system enters the active phase and moves rightward
along the periodic branch. When the homoclinic
bifurcation is reached the trajectory returns to the
stationary branch, restarting the cycle.

2.3. The composite model

In the composite model, ATP from the glycolytic
subsystem feeds into the model for electrical activity
through the ATP-sensitive potassium channel conduc-
tance (Eq. (10)). The influence of ATP can be under-
stood in terms of the fast/slow analysis (Fig. 5). ATP has
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no effect on the c nullcline (Eq. (15)), and only effects
the c dynamics indirectly through V : However, it does
affect voltage (Eqs. (4) and (10)), and thus influences the
z-curve. In particular, increasing ATP moves the z-curve
to the right. This is because the increase in ATP reduces
the conductance of the K(ATP) current, so more K(Ca)
current is needed to bring the cell to rest, and the z-curve
is shifted to higher levels of c:
If ATP is low, then the nullcline intersects the bottom

branch of the z-curve and the cell is at rest. At higher
ATP levels the intersection occurs on the middle branch
and the cell bursts. If the intersection is low on the
middle branch, near the saddle-node bifurcation, then
the bursting trajectory moves rapidly along the periodic
branch and slowly along the stationary branch, resulting
in bursting with a low plateau fraction (Fig. 6A,B). If
the intersection occurs higher up on the middle branch,
as would be the case with a higher ATP concentration
(lower gKðATPÞ), then the trajectory moves rapidly along
the stationary branch and slowly along the periodic
branch and the bursting that is produced has a high
plateau fraction (Fig. 6C,D).
At very high ATP concentrations, the z-curve is

translated so far to the right that the nullcline intersects
the periodic branch resulting in continuous spiking.
3. Complex bursting

3.1. Accordion bursting

Our first use of the composite model is to simulate the
‘‘accordion bursting’’ observed by Cook (1983), which is
characterized by a slow variation of the burst plateau
fraction. This complex bursting oscillation can be
understood in terms of the fast/slow analysis. When
glycolytic oscillations occur, the variations in ATP move
the z-curve back and forth, shifting the location at which
the c nullcline intersects the z-curve. While the intersec-
tion always occurs on the middle branch of the z-curve,
it is sometimes closer to the saddle node and sometimes
closer to the homoclinic bifurcation. As a result, the
bursting rhythm smoothly alternates between a low-
(Fig. 6A,B) and a high plateau fraction (Fig. 6C,D).
This is shown in Fig. 7. Panel A shows the simulated
accordion bursting oscillation, while the bottom panels
quantify some of the features of the oscillation. Panel B
shows a profound rhythm in the plateau fraction, which
ranges from roughly 0.3 to 0.6 with a period of 5 min
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(the period of the glycolytic oscillation). Panel C shows
rhythmic variation in the burst frequency, which is twice
as fast as the plateau fraction rhythm. These simulation
data are similar to the experimental data from mouse
islets shown by Cook (Fig. 1 of Cook, 1983).
The faster burst frequency rhythm in Fig. 7C, twice

that of the glycolytic oscillation frequency, is due to the
non-monotonic response of the burst frequency to an
elevation in the slow nullcline (Carroll et al., 1990).
When the nullcline is just above the saddle node, the
plateau fraction and burst frequency are both low. As
the nullcline is raised (or the z-curve is right-shifted
by an increase in ATP), the plateau fraction increases
monotonically. However, the burst frequency first
increases due to a decrease in the silent-phase duration,
but then decreases due to an increase in the active-phase
duration. Thus, as ATP rises from trough to peak, the
burst frequency first rises and then falls, yielding an
oscillation with frequency twice that of the glycolytic
frequency.

3.2. Other examples of complex bursting

We next apply the composite model to the three
examples of complex bursting described by Henquin
(Henquin et al., 1982). Again, these different oscillations
can be decomposed using a fast/slow analysis. If the
z-curve is shifted far to the left, the c nullcline intersects
the z-curve on the lower stable stationary branch. There
is no bursting rhythm, and instead the system is at rest
(Fig. 8A,B). If the z-curve is shifted far to the right, the c

nullcline intersection occurs on the periodic branch of
the z-curve. The system then spikes continuously
(Fig. 8C,D).
The complex bursting shown in Fig. 9 is similar to

accordion bursting, in that ATP oscillates due to
oscillations in glycolysis. However, the amplitude of
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Fig. 8. (A,B) At sufficiently low values of ATP the c nullcline

intersects the z-curve on the bottom branch, and the system is at rest

ð %gKðATPÞ ¼ 175 pS; f ¼ 0:001Þ: (C,D) At sufficiently high values of ATP
the nullcline intersects the periodic branch of the z-curve and the

system spikes continuously ð %gKðATPÞ ¼ 140 pS; f ¼ 0:001Þ:

2:2 mMÞ; followed by a transient phase of continuous spiking

ðc; ATP ¼ 2:5 mMÞ: The cycle reverses during the downswing of the

ATP oscillation.
the ATP oscillation is now greater. At the trough of the
oscillation, the z-curve is shifted far to the left and the
intersection with the nullcline is on the bottom branch
(Fig. 10, black), so the voltage is repolarized (labeled a

in Fig. 9). As ATP rises, the z-curve moves slowly
rightward until the nullcline intersects the z-curve on the
middle branch (Fig. 10, red), initiating several cycles of
bursting driven by activity-dependent oscillations in c

(labeled b in Fig. 9). As the z-curve continues to move
rightward, the intersection occurs higher up on the
middle branch, resulting in an increasing plateau
fraction. Eventually the z-curve moves so far to the
right that the intersection occurs on the periodic branch
(Fig. 10, blue), and the system enters a phase of
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continuous spiking (labeled c in Fig. 9). This spiking
phase continues for as long as ATP is above the
threshold value, which may be for a minute or longer.
The long duration of the spiking phase, which is on
the slow time scale of ATP oscillations, contrasts with
the relatively short active phase of a burst, which is on
the much faster time scale of c:
In the descending limb of the ATP oscillation the

z-curve moves to the left, slowly progressing through the
continuous spiking phase, then the bursting phase with
ever shorter plateau fractions, and finally into an
extended silent phase or ‘‘desert’’ where the nullcline
intersects the bottom branch of the z-curve. The
variations in active and silent phase durations are
quantified in Fig. 9B. There is clearly a longer active
phase duration when the phase point is stalled on the
periodic branch, and a long silent phase duration when
it is stalled on the lower stationary branch. This form of
complex bursting, with modulated plateau fraction,
periodic long spiking phases and deserts, is similar to
experimental islet data in Fig. 2A of Henquin et al.
(1982).
Another example of complex bursting, this time

without deserts, is shown in Fig. 11. Again, there is a
slow variation in the silent and active-phase durations
(Fig. 11B) due to glycolytic oscillations in ATP.
Although ATP rises to a level sufficiently high to
produce a long spiking phase, it never declines to a level
sufficiently low to produce a desert. This example of
complex bursting is similar to experimental data in
Fig. 2B of Henquin et al. (1982).
Fig. 12 illustrates complex bursting that appears to be

quite different from the other examples, consisting of a
desert, followed by a short burst, followed by a very
long burst. This behavior is reflected in distinct rhythms
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Fig. 11. (A) The bursting pattern exhibits a rhythmic plateau fraction

highlighted with periodic long spiking phases, but with no deserts.

(B) There are variations in active- and silent-phase durations, with

periodic spikes in the active-phase duration when the trajectory is

stalled on the periodic branch. Parameter values are %gKðATPÞ ¼ 350 pS;
f ¼ 0:00065; n ¼ 10; Z ¼ 187:5; tc ¼ 1200 s: This bursting is similar to
the experimental recording from Henquin et al. (1982), Fig. 2B.
in the active and silent-phase durations (Fig. 12B). As in
other cases, the desert is due to a left-shifted z-curve,
and the long spiking phase is due to a right-shifted
curve. However, the region for which ‘‘normal’’ bursting
is achieved, driven by an oscillation in c as in Fig. 4, is
small in this case. Thus, as ATP oscillates the system
moves rapidly between a desert and a long burst, with
only a single ‘‘normal’’ burst produced between. This is
in contrast to earlier examples of complex bursting,
where many cycles of bursting occur before and after a
long spiking phase. This example of complex bursting is
similar to experimental data in Fig. 2C of Henquin et al.
(1982).
4. Discussion

We have demonstrated that the interaction of a
bursting electrical oscillation with a slow glycolytic
oscillation can produce complex electrical bursting
patterns of the type published earlier from mouse
pancreatic islets (Cook, 1983; Henquin et al., 1982).
While this does not prove that the reported complex
bursting patterns are produced through this mechanism,
it does demonstrate the sufficiency of the glycolytic
mechanism. We have also demonstrated how a complex
bursting pattern can be analysed mathematically when
one of the two slow processes is much slower than the
other and is independent of electrical activity.
The role that glycolytic oscillations play in the

electrical activity of islets is controversial. Some suggest
that the regular bursting oscillations typically observed
in islets are driven by glycolytic oscillations (Longo et al.,
1991; Tornheim, 1997), while others suggest that
nucleotide oscillations are driven by oscillations in
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Ca2þ that result from bursting (Ainscow and Rutter,
2002; Detimary et al., 1998; Keizer and Magnus, 1989;
Kennedy et al., 2002). We suggest a third scenario:
glycolytic oscillations, when they occur, can modulate
the bursting that is produced by some other mechanism.
The electrical recordings from Cook (1983) and
Henquin et al. (1982) are examples of this modulated
bursting, as are more recent intracellular calcium
recordings from Zhang et al. (2003).
If our hypothesis is correct, then if glycolytic

oscillations are somehow stopped complex bursting
should transform into regular periodic bursting. If, on
the other hand, the bursting is driven by glycolytic
oscillations, then once the oscillations are stopped the
bursting should stop. Experimentally, glycolytic oscilla-
tions can be controlled by controlling the environment.
In principle, then, it should be possible to stop glycolytic
oscillations in b-cells. In practice, however, there are
many technical difficulties and questions about inter-
pretation. In one example where clear oscillations in a
metabolic indicator (oxygen content) were observed, the
indicator stopped oscillating when the cell was hyper-
polarized by application of a K(ATP) channel activator
(Kennedy et al., 2002). This suggests that the electrical
bursting was driving metabolic oscillations, possibly
through the effects of calcium on mitochondrial
metabolism. However, since electrical activity was not
measured, it is not clear whether the bursting was
regular or complex. The results may be different if the
same protocol were applied to an islet exhibiting
complex bursting. If our hypothesis is true, that
glycolytic oscillations typically lead to complex bursting,
then another difficulty in studying them is that they
likely occur only rarely. The majority of the published
recordings of islet electrical activity show regular
periodic bursts, not the complex patterns we attribute
to glycolytic oscillations. The rarity of glycolytic
oscillations make them difficult to study.
The models used in this study were chosen to be as

simple as possible to facilitate the fast/slow analysis. The
same dynamic mechanisms would apply to complex
bursting produced with more complete models as long
as the glycolysis is independent of electrical activity and
is slower than the slow processes driving bursting. Some
more complete models for glycolytic oscillations include
those by Smolen (Smolen, 1995), Tornheim (1979), and
Westermark and Lansner (2003). More recent models of
bursting in b-cells include those by Chay (1996), Keizer
and Smolen (1989), and Sherman et al. (1988). In one
recent b-cell model, the Phantom Bursting Model
(PBM), bursting is driven by the interaction of more
than one slow variable (Bertram et al., 2000; Goforth
et al., 2002). In the PBM, the burst period ranges from a
few seconds to a few minutes, depending upon the
conductance of the various ionic currents. The fastest
bursting is driven by the faster of the two slow variables,
while the slowest bursting is driven by the other slow
variable. The ‘‘medium’’ bursting typically exhibited by
islets is due to the interaction of both slow variables. In
the model used in the current study, the burst period is
most effectively varied through the parameter f :
Reducing f slows down the bursting by reducing the
speed of the single slow variable, the cytosolic-free Ca2þ

concentration. We have set this parameter, the fraction
of free Ca2þ; to small values to obtain the rather long
burst periods exhibited by the data. (A more realistic
value of this parameter is f ¼ 0:01:) This could have
been done more naturally by adjusting appropriate
conductance values in the PBM, but at the cost of extra
dynamical complexity.
Another parameter varied to give the various complex

bursting patterns was the maximal K(ATP) conductance,

%gKðATPÞ: Decreasing this parameter shifts the z-curve
rightward, simulating the effects of increasing the glucose
concentration. Finally, the parameters n; Z; and tc; which
correspond to the glycolytic subsystem, were varied to
change the speed of the glycolytic oscillation. Experi-
mental data suggests that such oscillations have a wide
range of periods, from a few minutes to more than ten
minutes (Tornheim, 1997).
The major simplification made in this modeling study

is the omission of metabolic processes downstream of
glycolysis. The products of glycolysis are the substrates
for the citric acid cycle, which in turn yields substrates for
oxidative phosphorylation. Indeed, it is the latter process
that produces most of the ATP. However, a model that
includes these complex processes, even if in a simplified
form, would make the fast/slow analysis performed here
much more difficult and less transparent. In any case,
oscillations in glycolysis should result in oscillations in
the cytoplasmic level of ATP since the output of
glycolysis is the input to downstream processes. Hence,
we view the simulation results reported here as suggestive
of what could occur if the full metabolic pathway were
included in the model. Most importantly, the close
similarity between the simulation results and experimen-
tal recordings suggest that some of the complex bursting
patterns observed in islets may be due to an independent
ATP oscillation, possibly of glycolytic origin.
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