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Abstract

Most of the adenosine triphosphate (ATP) synthesized during glucose metabolism is produced in the mitochondria through oxidative

phosphorylation. This is a complex reaction powered by the proton gradient across the mitochondrial inner membrane, which is

generated by mitochondrial respiration. A detailed model of this reaction, which includes dynamic equations for the key mitochondrial

variables, was developed earlier by Magnus and Keizer. However, this model is extraordinarily complicated. We develop a simpler model

that captures the behavior of the original model but is easier to use and to understand. We then use it to investigate the mitochondrial

responses to glycolytic and calcium input. We use the model to explain experimental observations of the opposite effects of raising

cytosolic Ca2þ in low and high glucose, and to predict the effects of a mutation in the mitochondrial enzyme nicotinamide nucleotide

transhydrogenase (Nnt) in pancreatic b-cells.
r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The mitochondria are the primary location for the
production of energy-carrying molecules in most cells.
Metabolism begins in the cytoplasm with glycolysis, where
glucose is metabolized to the primary product pyruvate.
The pyruvate enters the mitochondria through shuttles,
where it is processed by the citric acid cycle. The coenzymes
nicotinamide adenine dinucleotide ðNADþÞ and flavin
adenine dinucleotide (FAD) are reduced during the citric
acid cycle, yielding NADH and FADH2 (some NADH is
also generated during glycolysis). These electron carriers
are used by the electron transport chain (ETC), which
supplies the energy to establish a proton gradient across the
inner membrane of the mitochondria. The gradient is used
to power the last stage of metabolism, oxidative phosphor-
ylation. Protons flowing down this gradient through the
ATP synthase complex provide the energy to phosphor-
ylate adenosine diphosphate (ADP) to adenosine tripho-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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sphate (ATP). This is the primary means through which the
energy molecule ATP is produced in most eukaryotic cells.
In a series of papers in the late 1990s, Magnus and

Keizer developed mathematical models of oxidative
phosphorylation (Magnus and Keizer, 1997, 1998a,
1998b). These models were developed in the context of
the insulin-secreting pancreatic b-cell, and were coupled to
models of the cell’s electrical activity and cytosolic
Ca2þ handling. The Magnus–Keizer (M–K) model in-
cludes most of the processes thought to be important for
mitochondrial oxidative phosphorylation, and indeed, the
completeness of the M–K model is one of its strengths. The
model was later used and modified by Cortassa et al., 2003
to describe metabolism in cardiac cells. The Cortassa
model also makes some improvements to the M–K model
and includes a model, which we do not use here, for
the citric acid cycle developed by Dudycha and Jafri
(Dudycha, 2000; Jafri et al., 2001).
The M–K model was derived from first principles, and as

a result it is very complex. Many of the properties of the
model, such as whether a flux term increases or decreases
when the value of a variable or parameter is changed, are

www.elsevier.com/locate/yjtbi
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Fig. 1. Illustration of the fluxes and reactions used in the model. The

different arrow types correspond to different types of fluxes or reactions.

Arrows with line-type arrow heads represent the flux of Ca2þ. Arrows with

open arrow heads represent proton fluxes. Arrows with closed arrow

heads represent nucleotide fluxes or phosphorylation events. Curved

arrows represent the production or oxidation of NADH. Finally, the

dashed arrow represents input to the mitochondria from glycolysis.
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masked by this complexity. Our first goal is to develop a
simplified model for oxidative phosphorylation that retains
the key features of the M–K model, yet is more intuitive. A
description of this simplified model, and comparison with
the M–K model as modified by Cortassa et al., is the focus
of the first portion of the article.

In the second portion, we use the simplified model to
study the response of the mitochondrial variables to pulses
of calcium and a variable reflecting glycolytic flux, both of
which are inputs to mitochondrial metabolism. This yields
predictions about whether the mitochondrial variables
increase or decrease in response to the input. Measure-
ments have been made of the levels of NAD(P)H, oxygen,
and the mitochondrial inner membrane potential in, for
example, pancreatic b-cells. Besides the clinical significance
of these insulin-secreting cells, they are interesting since
glucose metabolism is important not only for the survival
of the b-cell, but also for its electrical activity and patterned
insulin release.

We next use the model to investigate a recent experi-
mental result from mouse pancreatic islets that has been
hard to explain. It was found that elevations in the
intracellular Ca2þ concentration increase the intracellular
NADH concentration when the islet is maintained in a low
glucose bath. In higher glucose, a Ca2þ concentration
increase results in a reduction in the NADH concentration
(Luciani et al., 2006). Our model provides a plausible
mechanism for this.

Finally, we consider the effects of a negative mutation in
the mitochondrial enzyme nicotinamide nucleotide trans-
hydrogenase (Nnt). Such a mutation causes glucose
intolerance and impaired b-cell function in the widely used
C57BL/6J mouse strain (Toye et al., 2005). In the simplified
model, simulation of the Nnt mutation is accomplished by
increasing the proton leak across the mitochondrial inner
membrane. Increase of this single parameter results in
changes in the mitochondrial variables that would not be
obvious without a mathematical model. This illustrates one
of the strengths of the simplified model: its relative
simplicity makes it possible to predict and understand the
effects of changes in one or more parameters or variables.
This is particularly important when the mitochondrial
model is just one component of a larger cellular model.

2. Dynamic equations

We begin by describing the dynamic equations for the
mitochondrial variables NADHm, ADPm, DC, and Cam.
These equations are themselves simple. However, the flux
and reaction terms that make up the equations (Fig. 1) are
quite complex in the M–K model, and it is those that we
simplify in the following section.

The first stage of glucose metabolism in eukaryotic cells
is glycolysis, which takes place in the cytoplasm. Although
this produces some ATP and NADH, its primary output is
pyruvate. The pyruvate is transported into the mitochon-
dria where it is rapidly oxidized and decarboxylated by the
pyruvate dehydrogenase complex (PDH). The products of
PDH are a molecule of CO2, a molecule of NADH, and
acetyl coenzyme A (acetyl CoA). The acetyl CoA enters the
citric acid cycle, where more NADH is produced by
additional dehydrogenases. As was done by Magnus and
Keizer, we assume that the citric acid dehydrogenase rates
are proportional to the reaction rate of PDH, and let JPDH

represent the reaction rate for the sum of the dehydro-
genases. The NADH concentration is decreased by the
action of the ETC, during which NADH is converted to
NADþ and oxygen is consumed:

dNADHm

dt
¼ gðJPDH � JoÞ, (1)

where NADHm is the mitochondrial NADH concentration,
and Jo is the oxygen consumption rate. Both JPDH and
Jo have units of mM=ms. The time t is measured in ms, and
g ¼ 0:001 converts NADHm to units of mM.
The mitochondrial ADP concentration increases due to

the action of the adenine nucleotide transporter, which
transports ATP out of and ADP into the mitochondria.
ADP concentration decreases due to the action of the ATP
synthase, which phosphorylates ADP to ATP. Thus,

dADPm

dt
¼ gðJANT � JF1F0Þ, (2)

where ADPm is the mitochondrial ADP concentration
(with units of mM), JANT is the nucleotide transport rate,
and JF1F0 is the ATP synthase rate (both in mM=ms).
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Table 1

Parameter Values for the Simplified Model

p1 ¼ 400 p2 ¼ 1 p3 ¼ 0:01mM
p4 ¼ 0:6mMms�1 p5 ¼ 0:1mM p6 ¼ 177mV

p7 ¼ 5mV p8 ¼ 7mMms�1 p9 ¼ 0:1mM

p10 ¼ 177mV p11 ¼ 5mV p12 ¼ 120mMms�1

p13 ¼ 10mM p14 ¼ 190mV p15 ¼ 8:5mV

p16 ¼ 35mMms�1 p17 ¼ 0:002mMms�1 mV�1 p18 ¼ �0:03mMms�1

p19 ¼ 0:35mMms�1 p20 ¼ 2 FRT ¼ 0:037mV�1

p21 ¼ 0:01mM�1ms�1mV�1 p22 ¼ 1:1mM�1ms�1 p23 ¼ 0:001mMms�1

p24 ¼ 0:016mV�1 NADtot ¼ 10mM Atot ¼ 15mM

Cm ¼ 1:8mMmV�1 f m ¼ 0:01 kGPDH ¼ 5� 10�4 mMms�1

Cac

FBP

ATPm

Cam

NADHm

∆Ψ

Jo

Fig. 2. Input and output of mitochondrial respiration, and mitochondrial

variables present in the model. Oxygen consumption, Jo, is also illustrated

since it is an observable quantity.
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We assume that the mitochondrial concentrations of
adenine and pyridine nucleotides are conserved:

NADm þNADHm ¼ NADtot, (3)

ADPm þ ATPm ¼ Atot, (4)

where NADtot and Atot are the total concentrations (in mM,
see Table 1).

The inner membrane potential, DC, is influenced by
many fluxes and reactions:

dDC
dt
¼ ðJH;res � JH;atp � JANT � JH;leak

� JNaCa � 2JuniÞ=Cm, ð5Þ

where JH;res is the respiration-driven proton flux, JH;atp is
the proton flux through the ATP synthase, JH;leak is the
proton leak across the mitochondrial inner membrane,
JNaCa is the Ca2þ efflux through the electrogenic
Naþ=Ca2þ exchanger, and Juni is the Ca2þ influx through
the Ca2þ uniporter. The mitochondrial capacitance is Cm,
and DC has units of mV.

Finally, the Ca2þ concentration in the mitochondria
(Cam) is increased by the Ca2þ uniporter and decreased by
the Na/Ca exchanger:

dCam

dt
¼ f mðJuni � JNaCaÞ, (6)

where f m is the fraction of free Ca2þ.
Rather than using pyruvate concentration as input to

PDH, the glyceraldehyde 3-phosphate dehydrogenase
(GPDH) activity is used in our description. This is a
glycolytic enzyme downstream of the key allosteric enzyme
phosphofructokinase (PFK) in the glycolytic pathway.
Thus, the GPDH reaction rate reflects the flux through the
glycolytic pathway. We assume that the GPDH reaction is
in rapid equilibrium. Tornheim (1979) then argued that it
can be described approximately by an algebraic function of
the substrate fructose 1,6-bisphosphate (FBP),

JGPDH ¼ kGPDH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFBPÞ=ð1mMÞ

p
, (7)

where FBP has units of mM and JGPDH has units of
mMms�1. The cytosolic Ca2þ concentration, Cac, is
another input to mitochondrial respiration, since cytosolic
Ca2þ enters the mitochondria through Ca2þ uniporters,
and affects the mitochondrial dehydrogenases and the
inner membrane potential.
The end product of metabolism is ATP. Thus, the output

variable for mitochondrial metabolism is the mitochondrial
ATP concentration. This is turn determines the cytosolic
ATP concentration, through the action of the adenine
nucleotide translocator. Input, output, and mitochondrial
variables are illustrated in Fig. 2. Also illustrated is the
oxygen flux, since this is a measurable quantity.

3. Model simplification

In this section we describe the flux and reaction rates
used in the dynamic equations from the previous section.
We begin the descriptions of the terms with mathematical
expressions from Cortassa et al. (2003), which are
themselves modifications of expressions from the M–K
model (Magnus and Keizer, 1998a, 1998b). The Cortassa
expressions are used since they have been somewhat
improved over those from the M–K model. We still,
however, refer to these as ‘‘M–K expressions’’ or ‘‘M–K
functions’’ since the original formulation was by Magnus
and Keizer.
We begin with the pyruvate dehydrogenase (PDH)

reaction rate, ĴPDH . (The hat superscript is used here to
distinguish the M–K expression from our simplified
expression.) This reaction decarboxylates pyruvate, but
since we use GPDH as input to the mitochondria, we use
the GPDH reaction rate (Eq. 7) as input to PDH. PDH is
also known to be stimulated by mitochondrial Ca2þ. We
modify the M–K expression for ĴPDH by adding an explicit
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Fig. 3. PDH reaction rate computed with Eq. (8) (solid curves) and the

simplified expression (Eq. (10), dashed curves). (A) JPDH increases linearly

with JGPDH . (NADHm ¼ 0:3mM, Cam ¼ 0:2mM.) (B) The reaction rate

decreases when NADHm is increased and NADm is decreased, maintaining

NADHm þNADm ¼ 10mM (JGPDH ¼ 1:5mM=s, Cam ¼ 0:2mM). (C) The

dehydrogenase saturates at higher values of Cam (NADHm ¼ 0:3mM,

JGPDH ¼ 1:5mM=s).
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dependence on the ratio of product NADH to substrate
NADþ. The modified expression for the PDH reaction rate
(in units of mM=ms) is

ĴPDH ¼ ðVPDHF PDHJGPDH Þ=g2, (8)

where VPDH ¼ 77 mM=s, g2 ¼ 0:1 is the mitochondria/
cytosol volume ratio, and JGPDH is the GPDH reaction
rate. (Cortassa et al. converted M–K parameter values to
SI units. We use these parameter values, and convert from
mM to mM.) Finally,

FPDH ¼
1

1þ u2½ð1þ u1ð1þ Cam=KPDHcaÞ
�2
Þ=ðNADHm=NADm þ KPDHnad Þ�

.

(9)

Here u1 ¼ 1:5, u2 ¼ 1:0, KPDHca ¼ 0:05 mM and KPDHnad ¼

1. In the M–K model it was assumed that the reaction rate
of citric acid dehydrogenases is proportional to that of
PDH (Magnus and Keizer, 1998a), and ĴPDH represents
the sum of these two.

The simplified PDH reaction rate function that we use is

JPDH ¼
p1

p2 þNADHm=NADm

� �
Cam

p3 þ Cam

� �
JGPDH .

(10)

Values for the three parameters ðp1; p2; p3Þ, as well as other
parameter values for the simplified model, are given in
Table 1. The PDH reaction rate computed with the
two models is shown in Fig. 3. The top panel shows
that JPDH increases linearly with JGPDH , and
JPDH computed with Eq. (10) (dashed curve) closely
matches that computed with Eq. (8) (solid curve). The
dependence on NADH is shown in Fig. 3(B), with the total
NAD concentration ðNADHm þNADmÞ held constant at
10mM. The PDH rate decreases when NADHm is
increased (and NADm decreased) since NADþ is a
substrate for PDH. The dependence of JPDH on the
mitochondrial Ca2þ concentration is shown in Fig. 3(C).
The dehydrogenase rate increases with Cam, but saturates
at relatively low values of Cam. This Ca2þ dependence
becomes important later, when we study the effects of input
pulses on the mitochondrial variables.

Oxygen is consumed during the final stage of electron
transport, and this reflects conversion of NADH to NADþ

by the loss of electrons. The expression for O2 consumption
(Jo) is quite complex in the M–K model, with dependency
on NADþ, NADH, and the proton motive force ðDmH Þ:

Ĵo ¼
0:5rresðA� Bþ CÞ

D
, (11)

where

A ¼ Kresðra þ rc1e
6DCBFRT Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NADHm=NADm

p
, (12)

B ¼ rae
6gDmH FRT , (13)

C ¼ rc2Krese
6gDmH FRT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NADHm=NADm

p
, (14)
D ¼ ð1þ r1Kres

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NADHm=NADm

p
Þe6DCBFRT

þ ðr2 þ r3Kres

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NADHm=NADm

p
Þe6gDmH FRT . ð15Þ

Here rres ¼ 0:6036mM, Kres ¼ 1:35� 1018, ra ¼ 6:394�
10�13 ms�1, rc1 ¼ 2:656� 10�22 ms�1, rc2¼8:632� 10�30

ms�1, DCB ¼ 50mV, FRT ¼ F=RT ¼ 0:037mV�1 is Fara-
day’s constant divided by the gas constant and tempera-
ture, g ¼ 0:85, r1 ¼ 2:077� 10�18, r2 ¼ 1:728� 10�9, and
r3 ¼ 1:059� 10�26. See Magnus and Keizer (1998a) or
Cortassa et al. (2003) for a description of parameters. The
proton motive force, DmH , includes both the membrane
potential, DC, and a contribution due to the proton
concentration gradient, DpH:

DmH ¼ DCþ
DpH

FRT
, (16)

where DpH ¼ �0:6.
Our simplified expression for Jo is

Jo ¼
p4NADHm

p5 þNADHm

� �
1

1þ expððDC� p6Þ=p7Þ

� �
. (17)

Fig. 4 shows the O2 consumption rates calculated from
Eqs. (11) and (17), with p4–p7 adjusted to match the M–K
curves. The consumption rate declines for large DC (Fig.
4(A)), since it is more difficult to pump protons against a
large potential (metabolic control). The consumption rate
increases with the NADH concentration (Fig. 4(B)), since
NADH is an electron donor.
As oxygen is consumed by the ETC, protons are pumped

across the inner mitochondrial membrane. Thus, the
respiration-driven proton flux, JH;res, is linked to O2
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Fig. 4. Oxygen consumption rate, calculated with the M–K expression

(Eq. (11), solid curves) and with the simplified expression (Eq. (17), dashed

curves). (A) Jo declines with DC, reflecting metabolic control

ðNADHm ¼ 0:3mMÞ. (B) Jo increases with NADH, the electron donor

to the electron transport chain ðDC ¼ 160mVÞ.
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Fig. 5. Proton flux across the inner mitochondrial membrane due to

respiration, calculated with the M–K expression (Eq. (18)) and the

simplified expression (Eq. (21)). (A) JH;res decreases with DC, reflecting

metabolic control ðNADHm ¼ 0:3mMÞ. (B) Proton flux increases with an

increase in the concentration of the electron donor to the electron

transport chain. ðDC ¼ 160mV.)

0 2 3

ATPm (mM)

0

2

4

6

J H
,a

tp
 (

µM
/m

s)

120 140 160 180

∆Ψ (mV)

0

20

40
J H

,a
tp

 (
µM

/m
s)

(A)

(B)

4 51
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consumption. Both NADH and FADH are electron
donors, but in the M–K model NADH is the primary
donor. We therefore omit the contribution to JH ;res from
FADH. The M–K expression for the contribution to
JH;res from NADH is:

ĴH;res ¼
6rresðE � F Þ

D
, (18)

where

E ¼ raKres

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NADHm=NADm

p
, (19)

F ¼ ðra þ rbÞe
ð6gDmH FRT Þ (20)

and D is given by Eq. (15). The simplified expression for
JH;res is similar to that for Jo,

JH;res ¼
p8NADHm

p9 þNADHm

� �
1

1þ expððDC� p10Þ=p11Þ

� �
.

(21)

Fig. 5 shows JH;res calculated from both Eqs. (18) and (21).
As expected, the dependence of this flux term on DC and
NADHm is similar to that of Jo (Fig. 4).

ADP is converted to ATP using the energy provided by
the flow of protons down their concentration gradient
through the F1F0 ATP-synthase. This is the step at which
most of the ATP is formed during glucose metabolism.
Proton flux through the ATP-synthase in the M–K model is

ĴH;atp ¼ �3rF1 G �H

K þ L
, (22)

where rF1 ¼ 1:787mM is the concentration of the ATP-
synthase, and

G ¼ 100pað1þ eAF1FRT Þ, (23)

H ¼ �ðpa þ pbÞe
3DmH FRT , (24)

K ¼ ð1þ q1e
AF1FRT Þe3DCBFRT , (25)

L ¼ ðq2 þ q3e
AF1FRT Þe3DmH FRT , (26)
and where

AF1 ¼ ln KF1
ATPm

PiADPm

� �
=FRT . (27)

Parameter values are pa ¼ 1:656� 10�8 ms�1, pb ¼ 3:373�
10�10 ms�1, q1 ¼ 1:346� 10�8, q2 ¼ 7:739� 10�7, q3 ¼

6:65� 10�15, KF1 ¼ 1:71� 106, and Pi ¼ 20mM is the
inorganic phosphate concentration.
In the simplified expression for JH;atp there is an

increasing sigmoidal dependence on DC and a weak
decreasing dependence on ATPm:

JH ;atp ¼
p13

p13 þ ATPm

� �
p12

1þ expððp14 � DCÞ=p15Þ

� �
. (28)

Graphs of the M–K (Eq. (22)) and simplified (Eq. (28))
expression are compared in Fig. 6.
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The M–K expression for the phosphorylation rate of
ADP by the ATP-synthase, JF1F0, is

ĴF1F0 ¼ �rF1 M �N

K þ L
, (29)

where

M ¼ ð100pa þ pc1e
3DCBFRT ÞeAF1FRT , (30)

N ¼ pae
3DmH FRT þ pc2e

AF1FRTe3DmH FRT (31)

and K and L are given by Eqs. (25), (26). Because the
phosphorylation rate of ADP is determined by the proton
flux through the synthase, the simplified expression for
JF1F0 is similar to that of JH;atp. In fact, JF1F0 is a constant
multiple of JH;atp:

JF1F0 ¼
p13

p13 þ ATPm

� �
p16

1þ expððp14 � DCÞ=p15Þ

� �
. (32)

The ADP phosphorylation rates computed with Eqs. (29)
and (32) are shown in Fig. 7.

There is a small leak of protons across the inner
mitochondrial membrane, which is larger for larger values
of the electrical potential. This is linear in the M–K model:

ĴH;leak ¼ gHDmH , (33)

where gH ¼ 2� 10�3 mM ms�1 mV�1. In our model we use
the linear function

JH;leak ¼ p17DCþ p18. (34)

Note that we have replaced the pH dependence with a
constant factor p18. The fluxes computed using Eqs. (33)
and (34) are shown in Fig. 8.

The ATP produced in the mitochondria is transported to
the cytosol through the adenine nucleotide translocator.
This is a carrier that exchanges one molecule of mitochon-
drial ATP4� for one molecule of cytosolic ADP3�. It tends
to keep the ATP/ADP ratio in the cytosol equal to that in
the mitochondria. In the M–K formulation the flux rate,
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Fig. 7. Phosphorylation rate of the ATP synthase, calculated with the

M–K expression (Eq. (29), solid curves) and with the simplified expression

(Eq. (32), dashed curves). (A) Phosphorylation is powered by the electrical

gradient, and thus increases with DC. ðATPm ¼ 3mMÞ. (B) JF1F0 declines

as the concentration of the reaction product is increased. ðDC ¼ 160mVÞ.
JANT , is

ĴANT ¼ V maxANT

RATm � 0:8RATc

ð1þ 0:11RATcÞðRATm þ 7:2Þeð�0:5FRTDCÞ ,

(35)

where VmaxANT ¼ 5mMms�1 is the maximum flux rate, and

RATm ¼
ATPm

ADPm

, (36)

RATc ¼
ATPc

ADPc

, (37)

are the nucleotide ratios in the mitochondria and the
cytosol, respectively. Fig. 9 shows the dependence of
JANT on the mitochondrial nucleotide ratio and on the
inner membrane potential. Since the transporter maintains
RATc � RATm, we assume that RATc ¼ RATm in the
figure. The transporter is driven at a higher rate when the
mitochondrial ATP/ADP ratio is larger (Fig. 9(A)), and
the transport rate increases with the inner membrane
potential (Fig. 9(B)). In the simplified expression, we set
RATc ¼ RATm and replace the dependence on RATm with
a simpler functional form:

JANT ¼ p19

RATm

RATm þ p20

� �
e0:5FRTDC. (38)

The Ca2þ uniporter carries Ca2þ from the cytosol into
the mitochondrion and depends on the electrical driving
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force DC. This is described in the M–K model by

Ĵuni ¼ VmaxUni

O

PþQ

� �
, (39)

where

O ¼ 2FRTðDCm � DCoÞ
Cac

Ktrans

1þ
Cac

Ktrans

� �3

, (40)

P ¼ 1þ
Cac

Ktrans

� �4

, (41)

Q ¼
L1ð1� e�2FRT ðDCm�DCoÞÞ

ð1þ Cac=KactÞ
na

. (42)

The maximum transport rate is V maxUni ¼ 10mMms�1, and
Ktrans ¼ 19mM, Kact ¼ 0:38mM, L ¼ 110, DCo ¼ 91mV is
the offset membrane potential, and Cac is the cytosolic
Ca2þ concentration. The uniporter flux is greatly simplified
with the expression

Juni ¼ ðp21DC� p22ÞCa2
c . (43)

The original and simplified expressions for the uniporter
rate are shown in Fig. 10. The rate increases when either
the inner membrane potential or the cytosolic
Ca2þ concentration increase.

The final flux term is for the Naþ=Ca2þ exchanger, which
transports Ca2þ out of the mitochondria while bringing
Naþ in. The original M–K expression for ĴNaCa was
modified by Cortessa et al. to include a dependence on
the mitochondrial Ca2þ concentration. The reformulated
expression for ĴNaCa is

ĴNaCa ¼ V maxNaCa

ðCam=CacÞe
bFRTðDC�DCoÞ

ð1þ KNa=NacÞ
3
ð1þ KCa=CamÞ

, (44)

where Nac ¼ 10mM is the Naþ concentration in the cyto-
sol, V maxNaCa ¼ 0:06mMms�1, b ¼ 0:5, KNa ¼ 9:4mM, and
KCa ¼ 3:75� 10�4 mM. The simplified expression retains
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Fig. 10. The uniporter transport rate, calculated with the M–K expression

(Eq. (39), solid curves) and the simplified expression (Eq. (43), dashed

curves). (A) The transport rate increases with the inner membrane

potential ðCac ¼ 0:2mMÞ, and (B) with the cytosolic Ca2þ concentration

ðDC ¼ 160mVÞ.
the dependence on Cac, Cam, and DC:

JNaCa ¼ p23

Cam

Cac

� �
ep24DC. (45)

Fig. 11 shows JNaCa over a range of values of its three
variables. It is assumed that the cytosolic Naþ concentra-
tion is constant. There is a positive dependence on the inner
membrane potential (Fig. 11(A)). As expected from the
nature of the Naþ=Ca2þ exchanger, the flux is greater when
the cytosolic Ca2þ concentration is lower (Fig. 11(B)),
or when the mitochondrial Ca2þ concentration is greater
(Fig. 11(C)).
The differential equations for the full model were solved

numerically using the CVODE solver with tolerance of
10�9, implemented in the software package XPPAUT
(Ermentrout, 2002). The XPPAUT software is free and can
be downloaded from www.pitt.edu/�phase. The file con-
taining the mitochondrial model can be downloaded from
www.math.fsu.edu/�bertram.

4. Mitochondrial responses to input

An increase in the glucose concentration increases the
glycolytic flux, leading to an increase in the FBP
concentration. In addition, glycolysis has been shown to
be oscillatory in some cases (Tornheim and Lowenstein,
1974; Longo et al., 1991), resulting in periodic pulses of
FBP. We next examine the affect that a single FBP pulse
has on the mitochondrial variables.
Fig. 12 shows the responses to steps in the FBP

concentration to 5, 10, or 15 mM (Fig. 12(A)), with the

http://www.pitt.edu/~phase
http://www.pitt.edu/~phase
http://www.math.fsu.edu/bertram
http://www.math.fsu.edu/bertram
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cytosolic Ca2þ concentration held constant at 0:1mM.
Each step provides fuel for the mitochondria, so there is
a resulting increase in NADHm (Fig. 12(C)). The elevated
NADHm increases respiration, increasing the oxygen
consumption (Fig. 12(E)). The increased respiration
hyperpolarizes the inner membrane (Fig. 12(D)), resulting
in increased ATP production through the F1F0 ATP
synthase (Fig. 12(F)). The hyperpolarized membrane also
increases the Ca2þ uniporter flux rate (Fig. 10), leading to a
slight increase in the mitochondrial Ca2þ concentration
(Fig. 12(B)). Since respiration saturates at large NADH
concentrations (Fig. 5), reflecting metabolic control, there
is a saturation of Jo, DC, and ATPm for the higher FBP
concentrations.

Calcium concentration changes in the cytosol typically
occur as the result of ion channel openings or Ca2þ release
from the endoplasmic reticulum. In many cases, Cac is
elevated due to bursts of action potentials. In Fig. 13 we
show the response of the model to three 30-s Cac pulses,
with FBP concentration held constant at 5mM. Each pulse
could reflect a burst of action potentials, which is typically
tens of seconds in duration in pancreatic b-cells (Zhang et
al., 2003).

The entry of Ca2þ across the inner mitochondrial
membrane affects the mitochondria in two ways: the flux
of positive ions depolarizes the inner membrane (the
electrical effect), and the increase in Cam activates PDH,
increasing NADHm and leading to hyperpolarization of the
membrane (the dehydrogenase effect). In Fig. 13 we show
the results of these combined actions (solid curves), as well
as the electrical effect in isolation (dashed curves), obtained
by setting p3 ¼ 0, which removes the dehydrogenase effect.
Panel C shows that the Ca2þ pulses increase NADHm

(solid curve), as expected from the dehydrogenase effect.
This transiently enhances respiration, as shown by
increases in the oxygen consumption (Fig. 13(E)). The
enhanced respiration hyperpolarizes the inner membrane
(Fig. 13(D)), increasing the ATP production (Fig. 13(F)).
Thus, the Ca2þ pulses produce upward ‘‘teeth’’ in the
mitochondrial variables and the O2 flux. However, when
p3 ¼ 0, isolating the electrical effect, the Ca2þ pulses
transiently depolarize the inner membrane (Fig. 13(D),
dashed) and reduce ATP production (Fig. 13(F), dashed).
Thus, the teeth in the mitochondrial variables are reversed
when the dehydrogenase effect is removed, and measure-
ments of DC or ATPm in response to Ca2þ pulses could be
used to determine which of the two competing effects of
Ca2þ flux dominates within the mitochondria.
The direction of the teeth in DC and ATPm can also be

flipped from up to down by increasing the flux rate of the
Ca2þ uniporter Juni. In Fig. 14 we show the response of the
system to Ca2þ pulses with the default parameter values
(solid curves, the control) and with the uniporter flux
parameter p21 increased from 0.01 to 0:02mM�1ms�1mV�1

(dashed curves). This two-fold increase in the parameter
value results in an approximately four-fold increase in
Cam during the sequence of Cac pulses (Fig. 14(B)). The
basal level of Cam is also elevated, so that the basal level of
NADHm is higher than the control. In fact, the stimulatory
effect of Ca2þ on PDH is nearly saturated even at the basal
level of Cam, so the size of the upward NADHm teeth is
significantly less than the control (Fig. 14(C)). This is
reflected in the oxygen consumption (Fig. 14(E)), since the
smaller NADHm teeth stimulate less respiration. Along
with the blunted stimulatory effect of Ca2þ on PDH, there
is now greater Ca2þ flux across the membrane during the
Ca2þ pulses. Hence, the depolarizing electrical effect of
Ca2þ is enhanced while the hyperpolarizing dehydrogenase
effect is reduced. The net effect is that the DC teeth are
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now downward (depolarizing) rather than upward
(Fig. 14(D)). Consequently, the ATPm teeth are also
downward (Fig. 14(F)). In summary, any maneuover that
saturates the stimulatory effect of Ca2þ on PDH while
increasing Ca2þ influx across the inner membrane has the
potential of reversing the DC and ATPm teeth from
upward to downward.

In a recent in vitro experimental study of metabolism in
pancreatic islets, the NAD(P)H level was measured
simultaneously with the cytosolic Ca2þ concentration
(A) (

Fig. 15. Experimental simultaneous measurements of NAD(P)H autofluoresc

These data are similar to those reported in an earlier study (Luciani et al., 2006)

depolarization with 30mM KCl increased the cytosolic Ca2þ concentrati

concentration). (B) When the islet was maintained in a high glucose con

hyperpolarizing agent diazoxide, subsequent depolarization with 30mM KCl

autofluorescence.
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(Luciani et al., 2006). (NAD(P)H is the sum of the NADH
and NADPH concentrations.) When islets were maintained
in a low glucose concentration (3mM) and then depolar-
ized by adding 30mM KCl to the bath, both the
Ca2þ concentration and the NAD(P)H concentration
(measured through autofluorescence) increased. An exam-
ple is shown in Fig. 15(A). The experiment was repeated in
islets maintained in a high glucose concentration (10mM).
At this level of glucose the islet Ca2þ concentration
oscillates due to bursting electrical activity, so the
pharmacological agent diazoxide was added to the bath
to hyperpolarize the islets and thus bring Cac to a steady
low level. When the islets were then depolarized
with 30mM KCl the Ca2þ concentration increased as
expected. However, the NAD(P)H concentration decreased
(Fig. 15(B)). Thus, an increase in the cytosolic
Ca2þ concentration elevates the NAD(P)H concentration
in low glucose, but lowers it in high glucose.
The small decreases in NADHm during Ca2þ pulses in

Fig. 13(C) in the case where the dehydrogenase effect was
removed suggests that the model may be able to explain the
results of Fig. 15. That is, if the electrical effect of
Ca2þ dominates the dehydrogenase effect, then an increase
in Cam should be able to produce downward
NADHm teeth, consistent with Fig. 15(B). To accentuate
the electrical effect we used larger pulses of Cac than in
previous simulations (pulsing from 0.1 to 2mM). From the
NADHm differential equation (Eq. (1)), we see that
NADHm can decline only if the change in Jo is greater
than the change in JPDH during the Ca2þ pulses. Fig. 16(E)
shows that in the low glucose simulation ðFBP ¼ 1mMÞ,
the downward DC teeth have little effect on Jo; a
depolarization of 20mV from � 152mV (open circle) to
B)

ence (top) and cytosolic Ca2þ concentration (bottom) in pancreatic islets.

. (A) When the islet was maintained in a low glucose concentration (3mM),

on and the NAD(P)H autofluorescence (indicative of an increase in

centration (10mM) and the Ca2þ oscillations were abolished with the

increased the cytosolic Ca2þ concentration, but decreased the NAD(P)H



ARTICLE IN PRESS

Time (min)

120

140

160

∆Ψ
 (

m
V

)

0 7
0

0.05

0.1

N
A

D
H

m
 (

m
M

)

120 130 140 150 160

∆Ψ (µM/ms)

0

0.1

0.2

0.3

J o (
µM

/m
s)

Time (min)

120

140

160

∆Ψ
 (

m
V

)

1

1.5

2

2.5

N
A

D
H

m
 (

m
M

)

120 130 140 150 160

∆Ψ (mV)

0.3

0.4

0.5

0.6

J o (
µM

/m
s)

(A) (B)

(C) (D)

(E) (F)

1 2 3 4 5 6 0 71 2 3 4 5 6

0 71 2 3 4 5 60 71 2 3 4 5 6

Fig. 16. Model illustration of how the NADHm teeth can be upward in

low glucose ðFBP ¼ 1mM, left column) and downward in high glucose

(FBP ¼ 10mM, right column). Large pulses of Cac are used (Cac is pulsed

from 0.1 to 2mM) to accentuate the electrical effect. The bottom panels

show the Jo vs. DC curve (as in Fig. 4(A)) at the NADHm levels

corresponding to low (panel E) and high (panel F) glucose. (The curve

has been shifted to the left in both cases by setting p6 ¼ p10 ¼ 165mV.)

The open circle represents the values of DC and Jo prior to a Ca2þ pulse.

The closed circle represents the values during a Ca2þ pulse. The change in

Jo during a pulse is much greater in high glucose than in low glucose,

causing the NADHm teeth to be downward in high glucose (panel B) and

upward in low glucose (panel A).

Time (min)

0.3

0.4

0.5

J o (
µM

/m
s)

0

0.2

0.4

N
A

D
H

m
 (

m
M

)

0 7
0

0.2

0.4

0.6

C
a c (

µM
)

Time (min)

1

2

3

4

A
T

P m
 (

m
M

)

145

155

165

∆Ψ
 (

m
V

)

0

2

4

6

C
a m

 (
µM

)

(A) (B)

(C) (D)

(E) (F)

1 2 3 4 5 6 0 71 2 3 4 5 6

0 71 2 3 4 5 60 71 2 3 4 5 6

0 71 2 3 4 5 6 0 71 2 3 4 5 6

Fig. 17. In the Nnt mutant, proton leakage across the inner mitochondrial

membrane is increased. This is simulated by increasing p17 from

0:002mMms�1mV�1 (wild type, solid curves) to 0:02mMms�1mV�1

(mutant, dashed curves). This lowers the membrane potential and basal

level of ATP, but also increases the size of the teeth in DC and ATPm. The

FBP concentration is 5mM.

R. Bertram et al. / Journal of Theoretical Biology 243 (2006) 575–586584
� 130mV (filled circle) results in almost no change in Jo. In
fact, the change in JPDH is larger, so the NADHm teeth are
upward (Fig. 16(A)). In contrast, in the high glucose
simulation ðFBP ¼ 10mMÞ, the downward DC teeth cause
a significantly greater increase in Jo (Fig. 16F); a depolar-
ization of less than 10mV increases Jo by approximately
50%. Thus, the change in Jo is greater than the change in
JPDH during a Ca2þ pulse in high glucose. As a result, the
NADHm teeth are downward (Fig. 16(B)). Therefore, the
model is able to account for the experimental data in Fig.
15. The model is also consistent with the finding that the
Ca2þ-induced decline in NAD(P)H in high glucose is
converted to an increase in NAD(P)H when the ETC is
blocked (Luciani et al., 2006). Blocking the ETC depo-
larizes the mitochondrial inner membrane and reduces the
magnitude of the Ca2þ-induced increase in Jo.

Given the complexity of mitochondrial metabolism, it is
hard to predict the effects of genetic mutations in
mitochondrial enzymes without a mathematical model.
The current model facilitates such predictions. As an
example, we consider the nuclear-encoded mitochondrial
enzyme nicotinamide nucleotide transhydrogenase (Nnt).
This enzyme detoxifies reactive oxygen species (ROS)
which, when elevated, can reduce mitochondrial ATP
production (Hoek and Rydstrom, 1988). The accumulation
of ROS increases the activity of uncoupling protein 2,
resulting in enhanced proton leakage across the inner
membrane (Remedi et al., 2006). Thus, mutations in Nnt
that diminish its activity will likely lead to an increase in
proton leakage. Recent evidence suggests that diminished
Nnt activity in mouse mutants results in reduced insulin
release from pancreatic b-cells (Freeman et al., 2006),
possibly due to depolarization of b-cell mitochondria and
subsequent reduction in ATP production that results from
increased proton leakage.
How would a mutation in Nnt affect the Ca2þ response

of the mitochondrial variables? To simulate a negative Nnt
mutation we increased the proton leak rate tenfold by
increasing p17 from 0.002 to 0:02mMms�1mV�1. As
expected, one effect is to reduce the inner membrane
potential, and thus the mitochondrial ATP concentration.
What is not so obvious is that the Nnt mutation also
increases the size of the teeth in DC and ATPm (Fig. 17).
Thus, the effect of Ca2þ feedback onto metabolism is
amplified in this mutation. This effect, which is due to
metabolic control, would likely have been overlooked
without a mathematical model.

5. Discussion

The simplified model for mitochondrial ATP production
that we have described has several advantages over the
original M–K or Cortassa et al. models upon which it was
based. The relative simplicity of the model makes it
possible to readily determine the effects of the mitochon-
drial input on each of the flux and reaction terms. This
facilitates comprehension of the model. It is also clear from
the new model how changes in parameter values will affect
the flux and reaction terms. This helped considerably when



ARTICLE IN PRESS
R. Bertram et al. / Journal of Theoretical Biology 243 (2006) 575–586 585
trying to reproduce the reversal of the NADHm teeth in low
vs. high glucose (Figs. 15 and 16). With the original M–K
model it is unlikely that we would have realized how this
could occur. Also, the simplicity of the model facilitates
model studies of mitochondrial gene mutations, and the
effects of pharmacological agents that target the mitochon-
dria. Finally, the simplified model may be preferable to
more complex models when it forms only a portion of a
larger cellular model. Indeed, this was part of our
motivation, since our long-term goal is to incorporate all
stages of glucose metabolism into a model of metabolic and
calcium oscillations in the pancreatic b-cell.

Our model simulations focused largely on the response
of the mitochondrial variables to pulses of Ca2þ. Our
interest in this is driven by several studies in which
mitochondrial variables (or oxygen consumption) were
measured in pancreatic islets. In one study, the mitochon-
drial membrane potential was measured with rhodamine
123 simultaneously with the cytosolic Ca2þ concentration,
which was measured using fura-2/AM (Krippeit-Drews et
al., 2000). During glucose stimulation a series of Cac pulses
were observed, corresponding to bursts of action poten-
tials. Teeth in DC were clearly evident, with each
DC deflection correlated with a Cac pulse. In this case,
the DC teeth were downward, suggesting that the electrical
effect of Ca2þ on the mitochondria dominated the dehy-
drogenase effect. In another study in which Ca2þ and
DC were measured simultaneously, elevations in the
Ca2þ concentration through various means depolarized
the mitochondrial membrane when the glucose concentra-
tion was at a stimulatory level. In basal glucose, elevations
in the Ca2þ concentration had the opposite effect (Kind-
mark et al., 2001). Again, this suggests that the teeth are
upward (hyperpolarizing) when the dehydrogenase effect
dominates, and downward (depolarizing) when the elec-
trical effect dominates (e.g., when the dehydrogenase is
saturated, as could occur when the glucose concentration is
high). In another study (Jung et al., 2000), an oxygen
microsensor was used to measure oxygen levels in mouse
islets. The cytosolic Ca2þ concentration was measured
simultaneously. Teeth in the oxygen consumption were
observed, with each tooth (increase in oxygen consump-
tion) corresponding to a Cac pulse. Each Cac pulse is likely
due to a burst of action potentials. Oxygen teeth were again
seen in a later study by the same lab (Dahlgren et al., 2005).

Finally, we point out that while our simplified mito-
chondrial model has many applications, the more complex
models of M–K or Cortassa et al. have the advantage that
the parameters represent specific biophysical rates. Thus,
one could develop improved models by obtaining more
accurate measurements of the various rate constants. Our
parameters, in contrast, are based on curve fitting to the
model of Cortassa et al. If an improved detailed
mitochondrial model were developed, one could again
use a curve-fitting approach to develop a simplified model
that is more physiologically accurate than ours. Indeed,
there are other models of mitochondrial metabolism, each
of which focuses on specific aspects of metabolism (see
Jafri et al., 2001 for review). We have chosen to use the
M–K model since its development was based largely on
data from pancreatic b-cells, the cell type of interest to us.
Overall, we believe that both detailed and simplified
mitochondrial models are useful in understanding the
function of mitochondria and how they interact with other
components of the cell.
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